Export 4 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N [O] P Q R S T U V W X Y Z   [Show ALL]
Wang, K, Fialko Y.  2018.  Observations and modeling of coseismic and postseismic deformation due to the 2015 M-w 7.8 Gorkha (Nepal) earthquake. Journal of Geophysical Research-Solid Earth. 123:761-779.   10.1002/2017jb014620   AbstractWebsite

We use space geodetic data to investigate coseismic and postseismic deformation due to the 2015 M-w 7.8 Gorkha earthquake that occurred along the central Himalayan arc. Because the earthquake area is characterized by strong variations in surface relief and material properties, we developed finite element models that explicitly account for topography and 3-D elastic structure. We computed the line-of-sight displacement histories from three tracks of the Sentinel-1A/B Interferometric Synthetic Aperture Radar (InSAR) satellites, using persistent scatter method. InSAR observations reveal an uplift of up to approximate to 70mm over approximate to 20months after the main shock, concentrated primarily at the downdip edge of the ruptured asperity. GPS observations also show uplift, as well as southward movement in the epicentral area, qualitatively similar to the coseismic deformation pattern. Kinematic inversions of GPS and InSAR data and forward models of stress-driven creep suggest that the observed postseismic transient is dominated by afterslip on a downdip extension of the seismic rupture. A poroelastic rebound may have contributed to the observed uplift and southward motion, but the predicted surface displacements are small. We also tested a wide range of viscoelastic relaxation models, including 1-D and 3-D variations in the viscosity structure. Models of a low-viscosity channel previously invoked to explain the long-term uplift and variations in topography at the plateau margins predict opposite signs of horizontal and vertical displacements compared to those observed. Our results do not preclude a possibility of deep-seated viscoelastic response beneath southern Tibet with a characteristic relaxation time greater than the observation period (2years).

Lin, GQ, Shearer P, Fialko Y.  2006.  Obtaining absolute locations for quarry seismicity using remote sensing data. Bulletin of the Seismological Society of America. 96:722-728.   10.1785/0120050146   AbstractWebsite

We obtain absolute locations for 19 clusters of mining-induced seismicity in southern California by identifying quarries using remote sensing data, including optical imagery and differential digital elevation models. These seismicity clusters contain 16,574 events from the Southern California Seismic Network from 1984 to 2002, which are flagged as quarry blasts but without any -round-truth location constraints. Using georeferenced airphotos and satellite radar topography data, we identify the likely sources of these events as quarries that are clearly visible within 1 to 2 km of the seismically determined locations. We then shift the clusters to align with the airphoto images, obtaining an estimated absolute location accuracy of similar to 200 m for the cluster centroids. The improved locations of these explosions should be helpful for constraining regional 3D velocity models.

Fialko, Y.  2001.  On origin of near-axis volcanism and faulting at fast spreading mid-ocean ridges. Earth and Planetary Science Letters. 190:31-39.   10.1016/s0012-821x(01)00376-4   AbstractWebsite

At fast and superfast spreading mid-ocean ridges, such as the East Pacific Rise, a plate boundary is defined by a narrow (tens to hundreds of meters wide) neovolcanic zone within which the bulk of the upper oceanic crust is created. However, detailed near-bottom observations indicate that the volcanic construction may occasionally persist several kilometers off of the ridge axis. It has been proposed that off-axis volcanism manifests tapping of a wide melting region that supplies magma to the ridge axis, or spatial migration of magmatic sources in the crust and upper mantle. We demonstrate that off-axis eruptions may be a natural consequence of variations in magma supply rate even if the ridge axis is stationary in space, and the magma delivery is perfectly focussed at the ridge axis. Theoretical modeling and field observations indicate that off-axis volcanisin may result from magma emplacement in sills that propagate toward the surface after their characteristic horizontal size exceeds their emplacement depth. Volcanic construction and faulting due to sill intrusions may contribute to the formation of abyssal hills, arguably the most abundant relief form on Earth. (C) 2001 Elsevier Science B.V. All rights reserved.

Takeuchi, CS, Fialko Y.  2013.  On the effects of thermally weakened ductile shear zones on postseismic deformation. Journal of Geophysical Research-Solid Earth. 118:6295-6310.   10.1002/2013jb010215   AbstractWebsite

We present three-dimensional (3-D) numerical models of postseismic deformation following repeated earthquakes on a vertical strike-slip fault. Our models use linear Maxwell, Burgers, and temperature-dependent power law rheology for the lower crust and upper mantle. We consider effects of viscous shear zones that result from thermomechanical coupling and investigate potential kinematic similarities between viscoelastic models incorporating shear zones and elastic models incorporating rate-strengthening friction on a deep aseismic fault root. We find that the thermally activated shear zones have little effect on postseismic relaxation. In particular, the presence of shear zones does not change the polarity of vertical displacements in cases of rheologies that are able to generate robust postseismic transients. Stronger rheologies can give rise to an opposite polarity of vertical displacements, but the amplitude of the predicted transient deformation is generally negligible. We conclude that additional (to thermomechanical coupling) mechanisms of strain localization are required for a viscoelastic model to produce a vertical deformation pattern similar to that due to afterslip on a deep extension of a fault. We also investigate the discriminating power of models incorporating Burgers and power law rheology. These rheologies were proposed to explain postseismic transients following large (M7) earthquakes in the Mojave desert, Eastern California. Numerical simulations indicate that it may be difficult to distinguish between these rheologies even with high-quality geodetic observations for observation periods less than a decade. Longer observations, however, may potentially allow discrimination between the competing models, as illustrated by the model comparisons with available GPS and interferometric synthetic aperture radar data.