Publications

Export 3 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L [M] N O P Q R S T U V W X Y Z   [Show ALL]
M
Pearse, J, Fialko Y.  2010.  Mechanics of active magmatic intraplating in the Rio Grande Rift near Socorro, New Mexico. Journal of Geophysical Research-Solid Earth. 115   10.1029/2009jb006592   AbstractWebsite

We investigate long-term deformation due to the Socorro Magma Body (SMB), one of the largest active intrusions in the Earth's continental crust, using interferometric synthetic aperture radar (InSAR) observations and finite element simulations. InSAR data spanning 15 years (1992-2007) indicate that the magma body is associated with a steady crustal uplift at a rate of about 2 mm yr(-1). Previous work showed that while the pattern of surface uplift is consistent with an elastic inflation of a large sill-like magma body, the SMB could not have formed via steady elastic inflation because the latter would be outpaced by magma solidification. We resolve this problem using coupled thermovisco-elastic models, and place constraints on the intrusion history as well as the rheology of the ambient crustal rocks. We demonstrate that observations rule out the linear Maxwell response of the ductile crust, but are consistent with laboratory-derived power law rheologies. Our preferred model suggests that the age of the SMB is of the order of 10(3) years, and that the apparent constancy of the present-day uplift may be due to slow heat transfer and ductile deformation in a metamorphic aureole of a giant sill-like magma intrusion, rather than due to a steady increase in the magma overpressure. The SMB is a contemporaneous example of "magmatic intraplating," a process by which large volumes of mafic melt stall and spread at midcrustal depths due to density or rheology contrasts.

Brown, K, Fialko Y.  2012.  "Melt welt" mechanism of extreme weakening of gabbro at seismic slip rates. Nature. 488:638-641.   10.1038/nature11370   Abstract

Laboratory studies of frictional properties of rocks at slip velocities approaching the seismic range (~0.1–1 m s−1), and at moderate normal stresses (1–10 MPa), have revealed a complex evolution of the dynamic shear strength, with at least two phases of weakening separated by strengthening at the onset of wholesale melting. The second post-melting weakening phase is governed by viscous properties of the melt layer and is reasonably well understood. The initial phase of extreme weakening, however, remains a subject of much debate. Here we show that the initial weakening of gabbro is associated with the formation of hotspots and macroscopic streaks of melt (‘melt welts’), which partially unload the rest of the slip interface. Melt welts begin to form when the average rate of frictional heating exceeds 0.1–0.4 MW m−2, while the average temperature of the shear zone is well below the solidus (250–450 °C). Similar heterogeneities in stress and temperature are likely to occur on natural fault surfaces during rapid slip, and to be important for earthquake rupture dynamics.

Tymofyeyeva, E, Fialko Y.  2015.  Mitigation of atmospheric phase delays in InSAR data, with application to the eastern California shear zone. Journal of Geophysical Research-Solid Earth. 120:5952-5963.   10.1002/2015jb011886   AbstractWebsite

We present a method for estimating radar phase delays due to propagation through the troposphere and the ionosphere based on the averaging of redundant interferograms that share a common scene. Estimated atmospheric contributions can then be subtracted from the radar interferograms to improve measurements of surface deformation. Inversions using synthetic data demonstrate that this procedure can considerably reduce scatter in the time series of the line-of-sight displacements. We demonstrate the feasibility of this method by comparing the interferometric synthetic aperture radar (InSAR) time series derived from ERS-1/2 and Envisat data to continuous Global Positioning System data from eastern California. We also present results from several sites in the eastern California shear zone where anomalous deformation has been reported by previous studies, including the Blackwater fault, the Hunter Mountain fault, and the Coso geothermal plant.