Publications

Export 4 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H [I] J K L M N O P Q R S T U V W X Y Z   [Show ALL]
I
Wang, K, Xu XH, Fialko Y.  2017.  Improving Burst Alignment in TOPS Interferometry With Bivariate Enhanced Spectral Diversity. Ieee Geoscience and Remote Sensing Letters. 14:2423-2427.   10.1109/lgrs.2017.2767575   AbstractWebsite

Terrain observation by progressive scans (TOPS)mode synthetic aperture radar interferometry requires high accuracy of burst alignments. Geometrical burst alignment relying on precise orbits and digital topography is not always sufficient for Sentinel-1A TOPS-mode interferometry. Enhanced spectral diversity (ESD) method was proposed to estimate a constant azimuth shift between radar images that minimizes phase discontinuities across the bursts. In some cases, however, the ESD refinement fails to align the bursts in Sentinel-1 interferograms, possibly because of ionospheric propagation effects. Here, we show that in such cases, a bivariate shift (that depends on both azimuth and range) can efficiently remove phase discontinuities across the bursts. The bivariate shift can be derived from the double-differenced radar phase in the burst overlap regions.

Kaneko, Y, Fialko Y, Sandwell DT, Tong X, Furuya M.  2013.  Interseismic deformation and creep along the central section of the North Anatolian Fault (Turkey): InSAR observations and implications for rate-and-state friction properties. Journal of Geophysical Research-Solid Earth. 118:316-331.   10.1029/2012jb009661   AbstractWebsite

We present high-resolution measurements of interseismic deformation along the central section of the North Anatolian Fault (NAF) in Turkey using interferometric synthetic aperture radar data from the Advanced Land Observing Satellite and Envisat missions. We generated maps of satellite line-of-sight velocity using five ascending Advanced Land Observing Satellite tracks and one descending Envisat track covering the NAF between 31.2 degrees E and 34.3 degrees E. The line-of-sight velocity reveals discontinuities of up to similar to 5 mm/yr across the Ismetpasa segment of the NAF, implying surface creep at a rate of similar to 9 mm/yr; this is a large fraction of the inferred slip rate of the NAF (21-25 mm/yr). The lateral extent of significant surface creep is about 75 km. We model the inferred surface velocity and shallow fault creep using numerical simulations of spontaneous earthquake sequences that incorporate laboratory-derived rate and state friction. Our results indicate that frictional behavior in the Ismetpasa segment is velocity strengthening at shallow depths and transitions to velocity weakening at a depth of 3-6 km. The inferred depth extent of shallow fault creep is 5.5-7 km, suggesting that the deeper locked portion of the partially creeping segment is characterized by a higher stressing rate, smaller events, and shorter recurrence interval. We also reproduce surface velocity in a locked segment of the NAF by fault models with velocity-weakening conditions at shallow depth. Our results imply that frictional behavior in a shallow portion of major active faults with little or no shallow creep is mostly velocity weakening. Citation: Kaneko, Y., Y. Fialko, D. T. Sandwell, X. Tong, and M. Furuya (2013), Interseismic deformation and creep along the central section of the North Anatolian Fault (Turkey): InSAR observations and implications for rate-and-state friction properties, J. Geophys. Res. Solid Earth, 118, 316-331, doi: 10.1029/2012JB009661.

Fialko, Y.  2006.  Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system. Nature. 441:968-971.   10.1038/nature04797   AbstractWebsite

The San Andreas fault in California is a mature continental transform fault that accommodates a significant fraction of motion between the North American and Pacific plates. The two most recent great earthquakes on this fault ruptured its northern and central sections in 1906 and 1857, respectively. The southern section of the fault, however, has not produced a great earthquake in historic times ( for at least 250 years). Assuming the average slip rate of a few centimetres per year, typical of the rest of the San Andreas fault, the minimum amount of slip deficit accrued on the southern section is of the order of 7 - 10 metres, comparable to the maximum co-seismic offset ever documented on the fault(1,2). Here I present high-resolution measurements of interseismic deformation across the southern San Andreas fault system using a well-populated catalogue of space-borne synthetic aperture radar data. The data reveal a nearly equal partitioning of deformation between the southern San Andreas and San Jacinto faults, with a pronounced asymmetry in strain accumulation with respect to the geologically mapped fault traces. The observed strain rates confirm that the southern section of the San Andreas fault may be approaching the end of the interseismic phase of the earthquake cycle.

Lindsey, E, Sahakian V, Fialko Y, Bock Y, Barbot S, Rockwell T.  2013.  Interseismic strain localization in the San Jacinto Fault Zone. Pure and Applied Geophysics. :1-18.: Springer Basel   10.1007/s00024-013-0753-z   AbstractWebsite

We investigate interseismic deformation across the San Jacinto fault at Anza, California where previous geodetic observations have indicated an anomalously high shear strain rate. We present an updated set of secular velocities from GPS and InSAR observations that reveal a 2–3 km wide shear zone deforming at a rate that exceeds the background strain rate by more than a factor of two. GPS occupations of an alignment array installed in 1990 across the fault trace at Anza allow us to rule out shallow creep as a possible contributor to the observed strain rate. Using a dislocation model in a heterogeneous elastic half space, we show that a reduction in shear modulus within the fault zone by a factor of 1.2–1.6 as imaged tomographically by Allam and Ben-Zion (Geophys J Int 190:1181–1196, 2012) can explain about 50 % of the observed anomalous strain rate. However, the best-fitting locking depth in this case (10.4 ± 1.3 km) is significantly less than the local depth extent of seismicity (14–18 km). We show that a deep fault zone with a shear modulus reduction of at least a factor of 2.4 would be required to explain fully the geodetic strain rate, assuming the locking depth is 15 km. Two alternative possibilities include fault creep at a substantial fraction of the long-term slip rate within the region of deep microseismicity, or a reduced yield strength within the upper fault zone leading to distributed plastic failure during the interseismic period.