Publications

Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
2018
Tymofyeyeva, E, Fialko Y.  2018.  Geodetic evidence for a blind fault segment at the southern end of the San Jacinto Fault Zone. Journal of Geophysical Research-Solid Earth. 123:878-891.   10.1002/2017jb014477   AbstractWebsite

The San Jacinto Fault (SJF) splits into several active branches southeast of Anza, including the Clark fault and the Coyote Creek fault. The Clark fault, originally believed to terminate at the southern tip of the Santa Rosa Mountains, was suggested to extend further to the southeast to a junction with the Superstition Hills fault based on space geodetic observations and geologic mapping. We present new interferometric synthetic aperture radar and GPS data that confirm high deformation rates along the southeastern extent of the Clark fault. We derive maps of horizontal and vertical average velocities by combining data from the ascending and descending satellite orbits with an additional constraint provided by the azimuth of the horizontal component of secular velocities from GPS data. The resulting high-resolution surface velocities are differentiated to obtain a map of maximum shear strain rate. Joint inversions of InSAR and GPS data suggest that the hypothesized blind segment of the Clark fault and the Coyote Creek fault have slip rates of 13 3mm/yr and 5 4mm/yr, respectively. The blind southern segment of the Clark fault thus appears to be the main active strand of the SJF, posing a currently unrecognized seismic hazard.

2016
Jiang, JL, Fialko Y.  2016.  Reconciling seismicity and geodetic locking depths on the Anza section of the San Jacinto fault. Geophysical Research Letters. 43:10663-10671.   10.1002/2016gl071113   AbstractWebsite

Observations from the Anza section of the San Jacinto Fault in Southern California reveal that microseismicity extends to depths of 15-18km, while the geodetically determined locking depth is less than similar to 10km. This contrasts with observations from other major faults in the region and also with predictions of fault models assuming a simple layered distribution of frictional properties with depth. We suggest that an anomalously shallow geodetic fault locking may result from a transition zone at the bottom of seismogenic layer with spatially heterogeneous frictional properties. Numerical models of faults that incorporate stochastic heterogeneity at transitional depths successfully reproduce the observed depth relation between seismicity and geodetic locking, as well as complex spatiotemporal patterns of microseismicity with relatively scarce repeating earthquakes. Our models predict propagation of large earthquakes to the bottom of the transition zone, and ubiquitous aseismic transients below the locked zone, potentially observable using high-precision geodetic techniques.

Lindsey, EO, Fialko Y.  2016.  Geodetic constraints on frictional properties and earthquake hazard in the Imperial Valley, Southern California. Journal of Geophysical Research-Solid Earth. 121:1097-1113.   10.1002/2015jb012516   AbstractWebsite

We analyze a suite of geodetic observations across the Imperial Fault in southern California that span all parts of the earthquake cycle. Coseismic and postseismic surface slips due to the 1979 M 6.6 Imperial Valley earthquake were recorded with trilateration and alignment surveys by Harsh (1982) and Crook et al. (1982), and interseismic deformation is measured using a combination of multiple interferometric synthetic aperture radar (InSAR)-viewing geometries and continuous and survey-mode GPS. In particular, we combine more than 100 survey-mode GPS velocities with InSAR data from Envisat descending tracks 84 and 356 and ascending tracks 77 and 306 (149 total acquisitions), processed using a persistent scatterers method. The result is a dense map of interseismic velocities across the Imperial Fault and surrounding areas that allows us to evaluate the rate of interseismic loading and along-strike variations in surface creep. We compare available geodetic data to models of the earthquake cycle with rate- and state-dependent friction and find that a complete record of the earthquake cycle is required to constrain key fault properties including the rate-dependence parameter (a - b) as a function of depth, the extent of shallow creep, and the recurrence interval of large events. We find that the data are inconsistent with a high (>30mm/yr) slip rate on the Imperial Fault and investigate the possibility that an extension of the San Jacinto-Superstition Hills Fault system through the town of El Centro may accommodate a significant portion of the slip previously attributed to the Imperial Fault. Models including this additional fault are in better agreement with the available observations, suggesting that the long-term slip rate of the Imperial Fault is lower than previously suggested and that there may be a significant unmapped hazard in the western Imperial Valley.

2013
Crowell, BW, Bock Y, Sandwell DT, Fialko Y.  2013.  Geodetic investigation into the deformation of the Salton Trough. Journal of Geophysical Research-Solid Earth. 118:5030-5039.   10.1002/jgrb.50347   AbstractWebsite

The Salton Trough represents a complex transition between the spreading center in Baja California and the strike-slip San Andreas fault system and is one of the most active zones of deformation and seismicity in California. We present a high-resolution interseismic velocity field for the Salton Trough derived from 74 continuous GPS sites and 109 benchmarks surveyed in three GPS campaigns during 2008-2009 and previous surveys between 2000 and 2005. We also investigate small-scale deformation by removing the regional velocity field predicted by an elastic block model for Southern California from the observed velocities. We find a total extension rate of 11mm/yr from the Mesquite Basin to the southern edge of the San Andreas Fault, coupled with 15mm/yr of left-lateral shear, the majority of which is concentrated in the southern Salton Sea and Obsidian Buttes and is equivalent to 17mm/yr oriented in the direction of the San Andreas Fault. Differential shear strain is exclusively localized in the Brawley Seismic Zone, and dilatation rate indicates widespread extension throughout the zone. In addition, we infer clockwise rotation of 10 degrees/Ma, consistent with northwestward propagation of the Brawley Seismic Zone over geologic time.