Export 6 results:
Sort by: Author Title Type [ Year  (Desc)]
Wang, K, Fialko Y.  2014.  Space geodetic observations and models of postseismic deformation due to the 2005 M7.6 Kashmir (Pakistan) earthquake. Journal of Geophysical Research-Solid Earth. 119:7306-7318.   10.1002/2014jb011122   AbstractWebsite

We use the L-band Advanced Land Observing Satellite (ALOS) and C-band Envisat interferometric synthetic aperture data and campaign GPS observations to study the postseismic deformation due to the 2005 magnitude 7.6 Kashmir (Pakistan) earthquake that occurred in the northwestern Himalaya. Envisat data are available from both the descending and ascending orbits and span a time period of similar to 4.5years immediately following the earthquake (2005-2010), with nearly monthly acquisitions. However, the Envisat data are highly decorrelated due to high topography and snow cover. ALOS data are available from the ascending orbit and span a time period of similar to 2.5years between 2007 and 2009, over which they remain reasonably well correlated. We derive the mean line-of-sight (LOS) postseismic velocity maps in the epicentral area of the Kashmir earthquake using persistent scatterer method for Envisat data and selective stacking for ALOS data. LOS velocities from all data sets indicate an uplift (decrease in radar range), primarily in the hanging wall of the earthquake rupture over the entire period of synthetic aperture radar observations (2005-2010). Models of poroelastic relaxation predict uplift of both the footwall and the hanging wall, while models of viscoelastic relaxation below the brittle-ductile transition predict subsidence (increase in radar range) in both the footwall and the hanging wall. Therefore, the observed pattern of surface velocities indicates that the early several years of postseismic deformation were dominated by afterslip on the fault plane, possibly with a minor contribution from poroelastic rebound. Kinematic inversions of interferometric synthetic aperture radar and GPS data confirm that the observed deformation is consistent with afterslip, primarily downdip of the seismic asperity. To place constraints on the effective viscosity of the ductile substrate in the study area, we subtract the surface deformation predicted by stress-driven afterslip model from the mean LOS velocities and compare the residuals to models of viscoelastic relaxation for a range of assumed viscosities. We show that in order to prevent surface subsidence, the effective viscosity has to be greater than 10(19)Pas. ations are negligible

Tong, XP, Sandwell DT, Fialko Y.  2010.  Coseismic slip model of the 2008 Wenchuan earthquake derived from joint inversion of interferometric synthetic aperture radar, GPS, and field data. Journal of Geophysical Research-Solid Earth. 115   10.1029/2009jb006625   AbstractWebsite

We derived a coseismic slip model for the M(w) 7.9 2008 Wenchuan earthquake on the basis of radar line-of-sight displacements from ALOS interferograms, GPS vectors, and geological field data. Available interferometric synthetic aperture radar (InSAR) data provided a nearly complete coverage of the surface deformation along both ascending (fine beam mode) and descending orbits (ScanSAR to ScanSAR mode). The earthquake was modeled using four subfaults with variable geometry and dip to capture the simultaneous rupture of both the Beichuan fault and the Pengguan fault. Our model misfits show that the InSAR and GPS data are highly compatible; the combined inversion yields a 93% variance reduction. The best fit model has fault planes that rotate from shallow dip in the south (35 degrees) to nearly vertical dip toward the north (70 degrees). Our rupture model is complex with variations in both depth and rake along two major fault strands. In the southern segment of the Beichuan fault, the slip is mostly thrust (<13 m) and occurred principally in the upper 10 km of the crust; the rupture progressively transformed to right-lateral strike slip as it propagated northeast (with maximum offsets of 7 m). Our model suggests that most of the moment release was limited to the shallow part of the crust (depth less than 10 km). We did not find any "shallow slip deficit" in the slip depth distribution of this mixed mechanism earthquake. Aftershocks were primarily distributed below the section of the fault that ruptured coseismically.

Fialko, Y, Sandwell D, Agnew D, Simons M, Shearer P, Minster B.  2002.  Deformation on nearby faults induced by the 1999 Hector Mine earthquake. Science. 297:1858-1862.   10.1126/science.1074671   AbstractWebsite

Interferometric Synthetic Aperture Radar observations of surface deformation due to the 1999 Hector Mine earthquake reveal motion on several nearby faults of the eastern California shear zone. We document both vertical and horizontal displacements of several millimeters to several centimeters across kilometer-wide zones centered on pre-existing faults. Portions of some faults experienced retrograde (that is, opposite to their long-term geologic slip) motion during or shortly after the earthquake. The observed deformation likely represents elastic response of compliant fault zones to the permanent co-seismic stress changes. The induced fault displacements imply decreases in the effective shear modulus within the kilometer-wide fault zones, indicating that the latter are mechanically distinct from the ambient crustal rocks.

Jacobs, A, Sandwell D, Fialko Y, Sichoix L.  2002.  The 1999 (M-w 7. 1) Hector Mine, California, earthquake: Near-field postseismic deformation from ERS interferometry. Bulletin of the Seismological Society of America. 92:1433-1442.   10.1785/0120000908   AbstractWebsite

Interferometric synthetic aperture radar (InSAR) data over the area of the Hector Mine earthquake (M-w 7.1, 16 October 1999) reveal postseismic deformation of several centimeters over a spatial scale of 0.5 to 50 km. We analyzed seven SAR acquisitions to form interferograms over four time periods after the event. The main deformations seen in the line-of-sight (LOS) displacement maps are a region of subsidence (60 mm LOS increase) on the northern end of the fault, a region of uplift (45 mm LOS decrease) located to the northeast of the primary fault bend, and a linear trough running along the main rupture having a depth of up to 15 mm and a width of about 2 km. We correlate these features with a double left-bending, right-lateral, strike-slip fault that exhibits contraction on the restraining side and extension along the releasing side of the fault bends. The temporal variations in the near-fault postseismic deformation are consistent with a characteristic time scale of 135 + 42 or - 25 days, which is similar to the relaxation times following the 1992 Landers earthquake. High gradients in the LOS displacements occur on the fault trace, consistent with afterslip on the earthquake rupture. We derive an afterslip model by inverting the LOS data from both the ascending and descending orbits. Our model indicates that much of the afterslip occurs at depths of less than 3 to 4 km.

Fialko, Y, Simons M.  2000.  Deformation and seismicity in the Coso geothermal area, Inyo County, California: Observations and modeling using satellite radar interferometry. Journal of Geophysical Research-Solid Earth. 105:21781-21793.   10.1029/2000jb900169   AbstractWebsite

Interferometric synthetic aperture radar (InSAR) data collected in the Coso geothermal area, eastern California, during 1993-1999 indicate ground subsidence over a similar to 50 km(2) region that approximately coincides with the production area of the Coso geothermal plant. The maximum subsidence rate in the peak of the anomaly is similar to 3.5 cm yr(-1), and the average volumetric rate of subsidence is of the order of 10(6) m(3) yr(-1). The radar interferograms reveal a complex deformation pattern, with at least two irregular subsidence peaks in the northern part of the anomaly and a region of relative uplift on the south. We invert the InSAR displacement data for the positions, geometry, and relative strengths of the deformation sources at depth using a nonlinear least squares minimization algorithm. We use elastic solutions for a prolate uniformly pressurized spheroidal cavity in a semi-infinite body as basis functions for our inversions. Source depths inferred from our simulations range from 1 to 3 km, which corresponds to the production depths of the Coso geothermal plant. Underpressures in the geothermal reservoir inferred from the inversion are of the order of 0.1-1 MPa (except a few abnormally high underpressures that are apparently biased toward the small source dimensions). Analysis of the InSAR data covering consecutive time intervals indicates that the depths and/or horizontal extent of the deformation sources may increase with time. This increase presumably reflects increasing volumes of the subsurface reservoir affected by the geothermal exploitation. We show that clusters of microearthquakes associated with the geothermal power operation may result from perturbations in the pore fluid pressure, as well as normal and shear stresses caused by the deflation of the geothermal reservoir.

Fialko, YA, Rubin AM.  1999.  What controls the along-strike slopes of volcanic rift zones? Journal of Geophysical Research-Solid Earth. 104:20007-20020.   10.1029/1999jb900143   AbstractWebsite

We investigate the dynamics of viscous pressure losses associated with lateral magma transport in volcanic rift zones by performing (I) coupled elastic-hydrodynamic simulations of downrift magma flow in dikes and (2) analog experiments mimicking lateral dike propagation in the presence of an along-rift topographic slope. It is found that near-source eruptions are likely to be favored by shallow slopes while distant downrift eruptions may be encouraged by steeper slopes, provided that along-rift variations in the tectonic stress are negligible or uncorrelated on the timescale of multiple dike intrusions. This implies the existence of a critical slope to which a volcanic rift zone would naturally evolve. Such behavior is produced by three-dimensional (3-D) elastic effects and is controlled by the ratio of the driving pressure gradient due to the along-strike topographic slope to the vertical gradient in the excess magma pressure in the dike. This model may be viewed as complementary to commonly cited mechanisms that appeal to magma viscosity and the dynamics of freezing of lava flows at the surface to explain the low profiles of basaltic shield volcanoes. Our estimated values of the critical slopes are in general agreement with observations in Hawaiian rift zones, but further development of fully 3-D models is required for more accurate predictions.