Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
Jiang, JL, Fialko Y.  2016.  Reconciling seismicity and geodetic locking depths on the Anza section of the San Jacinto fault. Geophysical Research Letters. 43:10663-10671.   10.1002/2016gl071113   AbstractWebsite

Observations from the Anza section of the San Jacinto Fault in Southern California reveal that microseismicity extends to depths of 15-18km, while the geodetically determined locking depth is less than similar to 10km. This contrasts with observations from other major faults in the region and also with predictions of fault models assuming a simple layered distribution of frictional properties with depth. We suggest that an anomalously shallow geodetic fault locking may result from a transition zone at the bottom of seismogenic layer with spatially heterogeneous frictional properties. Numerical models of faults that incorporate stochastic heterogeneity at transitional depths successfully reproduce the observed depth relation between seismicity and geodetic locking, as well as complex spatiotemporal patterns of microseismicity with relatively scarce repeating earthquakes. Our models predict propagation of large earthquakes to the bottom of the transition zone, and ubiquitous aseismic transients below the locked zone, potentially observable using high-precision geodetic techniques.

Lindsey, EO, Fialko Y.  2013.  Geodetic slip rates in the southern San Andreas Fault system: Effects of elastic heterogeneity and fault geometry. Journal of Geophysical Research-Solid Earth. 118:689-697.   10.1029/2012jb009358   AbstractWebsite

We use high resolution interferometric synthetic aperture radar and GPS measurements of crustal motion across the southern San Andreas Fault system to investigate the effects of elastic heterogeneity and fault geometry on inferred slip rates and locking depths. Geodetically measured strain rates are asymmetric with respect to the mapped traces of both the southern San Andreas and San Jacinto faults. Two possibilities have been proposed to explain this observation: large contrasts in crustal rigidity across the faults, or an alternate fault geometry such as a dipping San Andreas fault or a blind segment of the San Jacinto Fault. We evaluate these possibilities using a two-dimensional elastic model accounting for heterogeneous structure computed from the Southern California Earthquake Center crustal velocity model CVM-H 6.3. The results demonstrate that moderate variations in elastic properties of the crust do not produce a significant strain rate asymmetry and have only a minor effect on the inferred slip rates. However, we find that small changes in the location of faults at depth can strongly impact the results. Our preferred model includes a San Andreas Fault dipping northeast at 60 degrees, and two active branches of the San Jacinto fault zone. In this case, we infer nearly equal slip rates of 18 +/- 1 and 19 +/- 2 mm/yr for the San Andreas and San Jacinto fault zones, respectively. These values are in good agreement with geologic measurements representing average slip rates over the last 10(4)-10(6) years, implying steady long-term motion on these faults. Citation: Lindsey, E. O., and Y. Fialko (2013), Geodetic slip rates in the southern San Andreas Fault system: Effects of elastic heterogeneity and fault geometry, J. Geophys. Res. Solid Earth, 118, 689-697, doi:10.1029/2012JB009358.

Pearse, J, Fialko Y.  2010.  Mechanics of active magmatic intraplating in the Rio Grande Rift near Socorro, New Mexico. Journal of Geophysical Research-Solid Earth. 115   10.1029/2009jb006592   AbstractWebsite

We investigate long-term deformation due to the Socorro Magma Body (SMB), one of the largest active intrusions in the Earth's continental crust, using interferometric synthetic aperture radar (InSAR) observations and finite element simulations. InSAR data spanning 15 years (1992-2007) indicate that the magma body is associated with a steady crustal uplift at a rate of about 2 mm yr(-1). Previous work showed that while the pattern of surface uplift is consistent with an elastic inflation of a large sill-like magma body, the SMB could not have formed via steady elastic inflation because the latter would be outpaced by magma solidification. We resolve this problem using coupled thermovisco-elastic models, and place constraints on the intrusion history as well as the rheology of the ambient crustal rocks. We demonstrate that observations rule out the linear Maxwell response of the ductile crust, but are consistent with laboratory-derived power law rheologies. Our preferred model suggests that the age of the SMB is of the order of 10(3) years, and that the apparent constancy of the present-day uplift may be due to slow heat transfer and ductile deformation in a metamorphic aureole of a giant sill-like magma intrusion, rather than due to a steady increase in the magma overpressure. The SMB is a contemporaneous example of "magmatic intraplating," a process by which large volumes of mafic melt stall and spread at midcrustal depths due to density or rheology contrasts.

Wei, M, Sandwell D, Fialko Y.  2009.  A silent M-w 4.7 slip event of October 2006 on the Superstition Hills fault, southern California. Journal of Geophysical Research-Solid Earth. 114   10.1029/2008jb006135   AbstractWebsite

During October 2006, the 20-km-long Superstition Hills fault (SHF) in the Salton Trough, southern California, slipped aseismically, producing a maximum offset of 27 mm, as recorded by a creepmeter. We investigate this creep event as well as the spatial and temporal variations in slip history since 1992 using ERS-1/2 and Envisat satellite data. During a 15-year period, steady creep is punctuated by at least three events. The first two events were dynamically triggered by the 1992 Landers and 1999 Hector Mine earthquakes. In contrast, there is no obvious triggering mechanism for the October 2006 event. Field measurements of fault offset after the 1999 and 2006 events are in good agreement with the interferometric synthetic aperture radar data indicating that creep occurred along the 20-km-long fault above 4 km depth, with most of the slip occurring at the surface. The moment released during this event is equivalent to a M-w 4.7 earthquake. This event produced no detectable aftershocks and was not recorded by the continuous GPS stations that were 9 km away. Modeling of the long-term creep from 1992 to 2007 creep using stacked ERS-1/2 interferograms also shows a maximum creep depth of 2-4 km, with slip tapering with depth. Considering that the sediment thickness varies between 3 km and 5 km along the SHF, our results are consistent with previous studies suggesting that shallow creep is controlled by sediment depth, perhaps due to high pore pressures in the unconsolidated sediments.