Publications

Export 2 results:
Sort by: Author Title [ Type  (Asc)] Year
Journal Article
Trugman, DT, Shearer PM, Borsa AA, Fialko Y.  2016.  A comparison of long-term changes in seismicity at The Geysers, Salton Sea, and Coso geothermal fields. Journal of Geophysical Research-Solid Earth. 121:225-247.   10.1002/2015jb012510   AbstractWebsite

Geothermal energy is an important source of renewable energy, yet its production is known to induce seismicity. Here we analyze seismicity at the three largest geothermal fields in California: The Geysers, Salton Sea, and Coso. We focus on resolving the temporal evolution of seismicity rates, which provides important observational constraints on how geothermal fields respond to natural and anthropogenic loading. We develop an iterative, regularized inversion procedure to partition the observed seismicity rate into two components: (1) the interaction rate due to earthquake-earthquake triggering and (2) the smoothly varying background rate controlled by other time-dependent stresses, including anthropogenic forcing. We apply our methodology to compare long-term changes in seismicity to monthly records of fluid injection and withdrawal. At The Geysers, we find that the background seismicity rate is highly correlated with fluid injection, with the mean rate increasing by approximately 50% and exhibiting strong seasonal fluctuations following construction of the Santa Rosa pipeline in 2003. In contrast, at both Salton Sea and Coso, the background seismicity rate has remained relatively stable since 1990, though both experience short-term rate fluctuations that are not obviously modulated by geothermal plant operation. We also observe significant temporal variations in Gutenberg-Richter b value, earthquake magnitude distribution, and earthquake depth distribution, providing further evidence for the dynamic evolution of stresses within these fields. The differing field-wide responses to fluid injection and withdrawal may reflect differences in in situ reservoir conditions and local tectonics, suggesting that a complex interplay of natural and anthropogenic stressing controls seismicity within California's geothermal fields.

Simons, M, Fialko Y, Rivera L.  2002.  Coseismic deformation from the 1999 M-w 7.1 Hector Mine, California, earthquake as inferred from InSAR and GPS observations. Bulletin of the Seismological Society of America. 92:1390-1402.   10.1785/0120000933   AbstractWebsite

We use interferometric synthetic aperture radar (InSAR) and Global Positioning System (GPS) observations to Investigate static deformation due to the 1999 M-w 7.1 Hector Mine earthquake, that occurred in the eastern California shear zone. Interferometric decorrelation, phase, and azimuth offset measurements indicate regions of surface and near-surface slip, which we use to constrain the geometry of surface rupture. The inferred geometry is spatially complex, with multiple strands. The southern third of the rupture zone consists of three subparallel segments extending about 20 km in length in a N45degreesW direction. The central segment is the simplest, with a single strand crossing the Bullion Mountains and a strike of N10degreesW. The northern third of the rupture zone is characterized by multiple splays, with directions subparallel to strikes in the southern and central. The average strike for the entire rupture is about N30degreesW. The interferograms indicate significant along-strike variations in strain which are consistent with variations in the ground-based slip measurements. Using a variable resolution data sampling routine to reduce the computational burden, we invert the InSAR and GPS data for the fault geometry and distribution of slip. We compare results from assuming an elastic half-space and a layered elastic space. Results from these two elastic models are similar, although the layered-space model predicts more slip at depth than does the half-space model. The layered model predicts a maximum coseismic slip of more than 5 In at a depth of 3 to 6 km. Contrary to preliminary reports, the northern part of the Hector Mine rupture accommodates the maximum slip. Our model predictions for the surface fault offset and total seismic moment agree with both field mapping results and recent seismic models. The inferred shallow slip deficit is enigmatic and may suggest that distributed inelastic yielding occurred in the uppermost few kilometers of the crust during or soon after the earthquake.