Export 6 results:
Sort by: Author Title Type [ Year  (Desc)]
Crowell, BW, Bock Y, Sandwell DT, Fialko Y.  2013.  Geodetic investigation into the deformation of the Salton Trough. Journal of Geophysical Research-Solid Earth. 118:5030-5039.   10.1002/jgrb.50347   AbstractWebsite

The Salton Trough represents a complex transition between the spreading center in Baja California and the strike-slip San Andreas fault system and is one of the most active zones of deformation and seismicity in California. We present a high-resolution interseismic velocity field for the Salton Trough derived from 74 continuous GPS sites and 109 benchmarks surveyed in three GPS campaigns during 2008-2009 and previous surveys between 2000 and 2005. We also investigate small-scale deformation by removing the regional velocity field predicted by an elastic block model for Southern California from the observed velocities. We find a total extension rate of 11mm/yr from the Mesquite Basin to the southern edge of the San Andreas Fault, coupled with 15mm/yr of left-lateral shear, the majority of which is concentrated in the southern Salton Sea and Obsidian Buttes and is equivalent to 17mm/yr oriented in the direction of the San Andreas Fault. Differential shear strain is exclusively localized in the Brawley Seismic Zone, and dilatation rate indicates widespread extension throughout the zone. In addition, we infer clockwise rotation of 10 degrees/Ma, consistent with northwestward propagation of the Brawley Seismic Zone over geologic time.

Lindsey, EO, Fialko Y.  2013.  Geodetic slip rates in the southern San Andreas Fault system: Effects of elastic heterogeneity and fault geometry. Journal of Geophysical Research-Solid Earth. 118:689-697.   10.1029/2012jb009358   AbstractWebsite

We use high resolution interferometric synthetic aperture radar and GPS measurements of crustal motion across the southern San Andreas Fault system to investigate the effects of elastic heterogeneity and fault geometry on inferred slip rates and locking depths. Geodetically measured strain rates are asymmetric with respect to the mapped traces of both the southern San Andreas and San Jacinto faults. Two possibilities have been proposed to explain this observation: large contrasts in crustal rigidity across the faults, or an alternate fault geometry such as a dipping San Andreas fault or a blind segment of the San Jacinto Fault. We evaluate these possibilities using a two-dimensional elastic model accounting for heterogeneous structure computed from the Southern California Earthquake Center crustal velocity model CVM-H 6.3. The results demonstrate that moderate variations in elastic properties of the crust do not produce a significant strain rate asymmetry and have only a minor effect on the inferred slip rates. However, we find that small changes in the location of faults at depth can strongly impact the results. Our preferred model includes a San Andreas Fault dipping northeast at 60 degrees, and two active branches of the San Jacinto fault zone. In this case, we infer nearly equal slip rates of 18 +/- 1 and 19 +/- 2 mm/yr for the San Andreas and San Jacinto fault zones, respectively. These values are in good agreement with geologic measurements representing average slip rates over the last 10(4)-10(6) years, implying steady long-term motion on these faults. Citation: Lindsey, E. O., and Y. Fialko (2013), Geodetic slip rates in the southern San Andreas Fault system: Effects of elastic heterogeneity and fault geometry, J. Geophys. Res. Solid Earth, 118, 689-697, doi:10.1029/2012JB009358.

Wei, M, Sandwell D, Fialko Y.  2009.  A silent M-w 4.7 slip event of October 2006 on the Superstition Hills fault, southern California. Journal of Geophysical Research-Solid Earth. 114   10.1029/2008jb006135   AbstractWebsite

During October 2006, the 20-km-long Superstition Hills fault (SHF) in the Salton Trough, southern California, slipped aseismically, producing a maximum offset of 27 mm, as recorded by a creepmeter. We investigate this creep event as well as the spatial and temporal variations in slip history since 1992 using ERS-1/2 and Envisat satellite data. During a 15-year period, steady creep is punctuated by at least three events. The first two events were dynamically triggered by the 1992 Landers and 1999 Hector Mine earthquakes. In contrast, there is no obvious triggering mechanism for the October 2006 event. Field measurements of fault offset after the 1999 and 2006 events are in good agreement with the interferometric synthetic aperture radar data indicating that creep occurred along the 20-km-long fault above 4 km depth, with most of the slip occurring at the surface. The moment released during this event is equivalent to a M-w 4.7 earthquake. This event produced no detectable aftershocks and was not recorded by the continuous GPS stations that were 9 km away. Modeling of the long-term creep from 1992 to 2007 creep using stacked ERS-1/2 interferograms also shows a maximum creep depth of 2-4 km, with slip tapering with depth. Considering that the sediment thickness varies between 3 km and 5 km along the SHF, our results are consistent with previous studies suggesting that shallow creep is controlled by sediment depth, perhaps due to high pore pressures in the unconsolidated sediments.

Fialko, Y.  2006.  Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system. Nature. 441:968-971.   10.1038/nature04797   AbstractWebsite

The San Andreas fault in California is a mature continental transform fault that accommodates a significant fraction of motion between the North American and Pacific plates. The two most recent great earthquakes on this fault ruptured its northern and central sections in 1906 and 1857, respectively. The southern section of the fault, however, has not produced a great earthquake in historic times ( for at least 250 years). Assuming the average slip rate of a few centimetres per year, typical of the rest of the San Andreas fault, the minimum amount of slip deficit accrued on the southern section is of the order of 7 - 10 metres, comparable to the maximum co-seismic offset ever documented on the fault(1,2). Here I present high-resolution measurements of interseismic deformation across the southern San Andreas fault system using a well-populated catalogue of space-borne synthetic aperture radar data. The data reveal a nearly equal partitioning of deformation between the southern San Andreas and San Jacinto faults, with a pronounced asymmetry in strain accumulation with respect to the geologically mapped fault traces. The observed strain rates confirm that the southern section of the San Andreas fault may be approaching the end of the interseismic phase of the earthquake cycle.

Fialko, Y, Rivera L, Kanamori H.  2005.  Estimate of differential stress in the upper crust from variations in topography and strike along the San Andreas fault. Geophysical Journal International. 160:527-532.   10.1111/j.1365-246X.2004.02511.x   AbstractWebsite

The major bends of the San Andreas fault in California are associated with significant variations in the along-fault topography. The topography-induced perturbations in the intermediate principal stress may result in the rotation of the fault with respect to the maximum compression axis provided that the fault is non-vertical, and the slip is horizontal. The progressive fault rotation may produce additional topography via thrust faulting in the adjacent crust, resulting in a positive feedback. The observed rotation of the fault plane due to the along-fault variations in topography is used to infer the magnitude of the in situ differential stress. Our results suggest that the average differential stress in the upper crust around the San Andreas fault is of the order of 50 MPa, implying that the effective fault strength is about a factor of two lower than predictions based on Byerlee's law and the assumption of hydrostatic pore pressure.

Fialko, Y, Simons M, Khazan Y.  2001.  Finite source modelling of magmatic unrest in Socorro, New Mexico, and Long Valley, California. Geophysical Journal International. 146:191-200.   10.1046/j.1365-246X.2001.00453.x   AbstractWebsite

We investigate surface deformation associated with currently active crustal magma bodies in Socorro, New Mexico, and Long Valley, California, USA. We invert available geodetic data from these locations to constrain the overall geometry and dynamics of the inferred deformation sources at depth. Our brst-fitting model for the Socorro magma body is a sill with a depth of 19 km, an effective diameter of 70 km and a rate of increase in the excess magma pressure of 0.6 kPa yr(-1). We show that the corresponding volumetric inflation rate is similar to6 x 10(-3) km(3) yr(-1), which is considerably less than previously suggested. The measured inflation rate of the Socorro magma body may result from a steady influx of magma from a deep source, or a volume increase associated with melting of the magma chamber roof (i.e. crustal anatexis). In the latter case, the most recent major injection of mantle-derived melts into the middle crust beneath Socorro map have occurred within the last several tens to several hundreds of years. The Synthetic Interferometric Aperture Radar (InSAR) data collected in the area of the Long Valley caldera, CA, between June 1996 and July 1998 reveal an intracaldera uplift with a maximum amplitude of similar to 11 cm and a volume of 3.5 x 10(-2) km(3). Modelling of the InSAR data suggests that the observed deformation might be due to either a sill-like magma body at a depth of similar to 12 km or a pluton-like magma body at a depth of similar to8 km beneath the resurgent dome. Assuming that the caldera fill deforms as an isotropic linear elastic solid, a joint inversion of the InSAR data and two-colons laser geodimeter data (which provide independent constraints on horizontal displacements at the surface) suggests that the inferred magma chamber is a steeply dipping prolate spheroid with a depth of 7-9 km and an aspect ratio in excess of 2:1. Our results highlight the need for large radar look angles and multiple look directions in future InSAR missions.