Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
Samsonov, SV, Feng WP, Fialko Y.  2017.  Subsidence at Cerro Prieto Geothermal Field and postseismic slip along the Indiviso fault from 2011 to 2016 RADARSAT-2 DInSAR time series analysis. Geophysical Research Letters. 44:2716-2724.   10.1002/2017gl072690   AbstractWebsite

We present RADARSAT-2 Differential Interferometric Synthetic Aperture Radar (DInSAR) observations of deformation due to fluid extraction at the Cerro Prieto Geothermal Field (CPGF) and afterslip on the 2010 M7.2 El Mayor-Cucapah (EMC) earthquake rupture during 2011-2016. Advanced multidimensional time series analysis reveals subsidence at the CPGF with the maximum rate greater than 100mm/yr accompanied by horizontal motion (radial contraction) at a rate greater than 30mm/yr. During the same time period, more than 30mm of surface creep occurred on the Indiviso fault ruptured by the EMC earthquake. We performed inversions of DInSAR data to estimate the rate of volume changes at depth due to the geothermal production at the CPGF and the distribution of afterslip on the Indiviso fault. The maximum coseismic slip due to the EMC earthquake correlates with the Coulomb stress changes on the Indiviso fault due to fluid extraction at the CPGF. Afterslip occurs on the periphery of maximum coseismic slip areas. Time series analysis indicates that afterslip still occurs 6years after the earthquake.

Fialko, Y.  2004.  Probing the mechanical properties of seismically active crust with space geodesy: Study of the coseismic deformation due to the 1992 M(w)7.3 Landers (southern California) earthquake. Journal of Geophysical Research-Solid Earth. 109   10.1029/2003jb002756   AbstractWebsite

[1] The coseismic deformation due to the 1992 M(w)7.3 Landers earthquake, southern California, is investigated using synthetic aperture radar (SAR) and Global Positioning System (GPS) measurements. The ERS-1 satellite data from the ascending and descending orbits are used to generate contiguous maps of three orthogonal components ( east, north, up) of the coseismic surface displacement field. The coseismic displacement field exhibits symmetries with respect to the rupture plane that are suggestive of a linear relationship between stress and strain in the crust. Interferometric synthetic aperture radar (InSAR) data show small-scale deformation on nearby faults of the Eastern California Shear Zone. Some of these faults ( in particular, the Calico, Rodman, and Pinto Mountain faults) were also subsequently strained by the 1999 M(w)7.1 Hector Mine earthquake. I test the hypothesis that the anomalous fault strain represents essentially an elastic response of kilometer-scale compliant fault zones to stressing by nearby earthquakes [Fialko et al., 2002]. The coseismic stress perturbations due to the Landers earthquake are computed using a slip model derived from inversions of the InSAR and GPS data. Calculations are performed for both homogeneous and transversely isotropic half-space models. The compliant zone model that best explains the deformation on the Calico and Pinto Mountain faults due to the Hector Mine earthquake successfully predicts the coseismic displacements on these faults induced by the Landers earthquake. Deformation on the Calico and Pinto Mountain faults implies about a factor of 2 reduction in the effective shear modulus within the similar to 2 km wide fault zones. The depth extent of the low-rigidity zones is poorly constrained but is likely in excess of a few kilometers. The same type of structure is able to explain high gradients in the radar line of sight displacements observed on other faults adjacent to the Landers rupture. In particular, the Lenwood fault north of the Soggy Lake has likely experienced a few centimeters of left-lateral motion across < 1-km-wide compliant fault zone having the rigidity reduction of more than a factor of 2. The inferred compliant fault zones are interpreted to be a result of extensive damage due to past earthquakes.