Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2014
Wang, K, Fialko Y.  2014.  Space geodetic observations and models of postseismic deformation due to the 2005 M7.6 Kashmir (Pakistan) earthquake. Journal of Geophysical Research-Solid Earth. 119:7306-7318.   10.1002/2014jb011122   AbstractWebsite

We use the L-band Advanced Land Observing Satellite (ALOS) and C-band Envisat interferometric synthetic aperture data and campaign GPS observations to study the postseismic deformation due to the 2005 magnitude 7.6 Kashmir (Pakistan) earthquake that occurred in the northwestern Himalaya. Envisat data are available from both the descending and ascending orbits and span a time period of similar to 4.5years immediately following the earthquake (2005-2010), with nearly monthly acquisitions. However, the Envisat data are highly decorrelated due to high topography and snow cover. ALOS data are available from the ascending orbit and span a time period of similar to 2.5years between 2007 and 2009, over which they remain reasonably well correlated. We derive the mean line-of-sight (LOS) postseismic velocity maps in the epicentral area of the Kashmir earthquake using persistent scatterer method for Envisat data and selective stacking for ALOS data. LOS velocities from all data sets indicate an uplift (decrease in radar range), primarily in the hanging wall of the earthquake rupture over the entire period of synthetic aperture radar observations (2005-2010). Models of poroelastic relaxation predict uplift of both the footwall and the hanging wall, while models of viscoelastic relaxation below the brittle-ductile transition predict subsidence (increase in radar range) in both the footwall and the hanging wall. Therefore, the observed pattern of surface velocities indicates that the early several years of postseismic deformation were dominated by afterslip on the fault plane, possibly with a minor contribution from poroelastic rebound. Kinematic inversions of interferometric synthetic aperture radar and GPS data confirm that the observed deformation is consistent with afterslip, primarily downdip of the seismic asperity. To place constraints on the effective viscosity of the ductile substrate in the study area, we subtract the surface deformation predicted by stress-driven afterslip model from the mean LOS velocities and compare the residuals to models of viscoelastic relaxation for a range of assumed viscosities. We show that in order to prevent surface subsidence, the effective viscosity has to be greater than 10(19)Pas. ations are negligible

2007
Hamiel, Y, Fialko Y.  2007.  Structure and mechanical properties of faults in the North Anatolian Fault system from InSAR observations of coseismic deformation due to the 1999 Izmit (Turkey) earthquake. Journal of Geophysical Research-Solid Earth. 112   10.1029/2006jb004777   AbstractWebsite

We study the structure and mechanical properties of faults in the North Anatolian Fault system by observing near-fault deformation induced by the 1999 M-w 7.4 Izmit earthquake (Turkey). We use interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System observations to analyze the coseismic surface deformation in the near field of the Izmit rupture. The overall observed coseismic deformation is consistent with deformation predicted by a dislocation model assuming a uniform elastic crust. Previous InSAR studies revealed small-scale changes in the radar range across the nearby faults of the North Anatolian fault system (in particular, the Mudurnu Valley and Iznik faults) (e.g., Wright et al., 2001). We demonstrate that these anomalous range changes are consistent with an elastic response of compliant fault zones to the stress perturbation induced by the Izmit earthquake. We examine the spatial variations and mechanical properties of fault zones around the Mudurnu Valley and Iznik faults using three-dimensional finite element models. In these models, we include compliant fault zones having various geometries and elastic properties and apply stress changes deduced from a kinematic slip model of the Izmit earthquake. The best fitting models suggest that the inferred fault zones have a characteristic width of a few kilometers, depth in excess of 10 km, and reductions in the effective shear modulus of about a factor of 3 compared to the surrounding rocks. The characteristic width of the best fitting fault zone models is consistent with field observations along the North Anatolian Fault system (Ambraseys, 1970). Our results are also in agreement with InSAR observations of small-scale deformation on faults in the Eastern California Shear Zone in response to the 1992 Landers and 1999 Hector Mine earthquakes (Fialko et al., 2002; Fialko, 2004). The inferred compliant fault zones likely represent intense damage and may be quite commonly associated with large crustal faults.