Publications

Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
2016
Mitchell, EK, Fialko Y, Brown KM.  2016.  Velocity-weakening behavior of Westerly granite at temperature up to 600 degrees C. Journal of Geophysical Research-Solid Earth. 121:6932-6946.   10.1002/2016jb013081   AbstractWebsite

The deep limit to seismicity in continental crust is believed to be controlled by a transition from velocity-weakening to velocity-strengthening friction based on experimental measurements of the rate dependence of friction at different temperatures. Available experimental data on granite suggest a transition to stable creep at about 350 degrees C (approximate to 15km depth). Here we present results from unconfined experiments on Westerly granite at both dry and hydrated conditions that show increasingly unstable slip (velocity-weakening behavior) at temperature up to 600 degrees C. A comparison of previously published experimental results with those presented in this study suggests that the rate and state friction parameters strongly depend on normal stress and pore pressure at high (>400 degrees C) temperature, which may help explain regional variations in the depth distribution of earthquakes in continental crust. Temperature dependence of the rate and state friction parameters may also contribute to strong dynamic weakening observed in high-speed friction experiments on crystalline rocks such as granite and gabbro.

2013
Mitchell, EK, Fialko Y, Brown KM.  2013.  Temperature dependence of frictional healing of Westerly granite: Experimental observations and numerical simulations. Geochemistry Geophysics Geosystems. 14:567-582.   10.1029/2012gc004241   AbstractWebsite

Temperature is believed to have an important control on frictional properties of rocks, yet the amount of experimental observations of time-dependent rock friction at high temperatures is rather limited. In this study, we investigated frictional healing of Westerly granite in a series of slide-hold-slide experiments using a direct shear apparatus at ambient temperatures between 20 degrees C and 550 degrees C. We observed that at room temperature coefficient of friction increases in proportion to the logarithm of hold time at a rate consistent with findings of previous studies. For a given hold time, the coefficient of friction linearly increases with temperature, but temperature has little effect on the rate of change in static friction with hold time. We used a numerical model to investigate whether time-dependent increases in real contact area between rough surfaces could account for the observed frictional healing. The model incorporates fractal geometry and temperature-dependent viscoelasoplastic rheology. We explored several candidate rheologies that have been proposed for steady state creep of rocks at high stresses and temperatures. None of the tested laws could provide an agreement between the observed and modeled healing behavior given material properties reported in the bulk creep experiments. An acceptable fit to the experimental data could be achieved with modified parameters. In particular, for the power-law rheology to provide a reasonable fit to the data, the stress exponent needs to be greater than 40. Alternative mechanisms include time-dependent gouge compaction and increases in bond strength between contacting asperities.

1997
Fialko, YA, Rubin AM.  1997.  Numerical simulation of high-pressure rock tensile fracture experiments: Evidence of an increase in fracture energy with pressure? Journal of Geophysical Research-Solid Earth. 102:5231-5242.   10.1029/96jb03859   AbstractWebsite

High confining pressure fracture tests of Indiana limestone [Abou-Sayed, 1977] and Iidate granite [Hashida et al., 1993] were simulated using boundary element techniques and a Dugdale-Barenblatt (tension-softening) model of the fracture process zone. Our results suggest a substantial (more than a factor of 2) increase in the fracture energy of Indiana limestone when the confining pressure was increased from zero to only 6-7 MPa. While Hashida es al. [1993] concluded that there was no change in the fracture energy of Iidate granite at confining pressures up to 26.5 MPa, we find that data from one series of experiments (''compact-tension'' tests in their terminology) are also consistent with a significant (more than a factor of 2) increase in fracture energy. Data from another set of their experiments (thick-walled cylinder tests) seem to indicate a decrease in the fracture energy of Iidate granite at confining pressures,of 6-8 MPa, but these may be biased due to the very small specimen size. To our knowledge these results are the first reliable indication from laboratory experiments that rock tensile fracture energy varies with confining pressure. Based on these results, some possible mechanisms of pressure sensitive fracture are discussed. We suggest that the inferred increase in fracture energy results from more extensive inelastic deformation near the crack tip that increases the effective critical crack opening displacement. Such deformation might have occurred due to the large deviatoric stress in the vicinity of the crack tip in the Abou-Sayed experiments, and due to the enlarged region of significant tensile stress near the crack tip in the Hashida et al. compact tension tests. These results also highlight the fact that at confining pressures that exceed the tensile strength of the material, tensile fracture energy will in general depend upon the crack size and the distribution of loads within it, as well as the ambient stress.

1995
Khazan, YM, Fialko YA.  1995.  Fracture Criteria at the Tip of Fluid-Driven Cracks in the Earth. Geophysical Research Letters. 22:2541-2544.   10.1029/95gl02547   AbstractWebsite

The effect of high confining pressure on fluid-filled crack growth is considered. Exact solutions are given for a two-dimensional horizontal crack in an infinite elastic body using the approximation of Dugdale-Barenblatt (DB) model. It is shown that for equilibrium cracks (i.e. for cracks on the verge of propagation) the large-scale crack characteristics, such as fluid overpressure, apparent fracture toughness, maximum opening of the crack and crack volume, grow with increase of confining pressure. These effects result from a pressure induced fracture resistance (PIFR). If basic parameters of the DB model (tensile strength and critical crack opening displacement) are independent of confining pressure then PIFR dominates over intrinsic rock strength starting from quite shallow depth (tens to hundreds of meters).