Publications

Export 13 results:
Sort by: Author Title Type [ Year  (Desc)]
2018
Tymofyeyeva, E, Fialko Y.  2018.  Geodetic evidence for a blind fault segment at the southern end of the San Jacinto Fault Zone. Journal of Geophysical Research-Solid Earth. 123:878-891.   10.1002/2017jb014477   AbstractWebsite

The San Jacinto Fault (SJF) splits into several active branches southeast of Anza, including the Clark fault and the Coyote Creek fault. The Clark fault, originally believed to terminate at the southern tip of the Santa Rosa Mountains, was suggested to extend further to the southeast to a junction with the Superstition Hills fault based on space geodetic observations and geologic mapping. We present new interferometric synthetic aperture radar and GPS data that confirm high deformation rates along the southeastern extent of the Clark fault. We derive maps of horizontal and vertical average velocities by combining data from the ascending and descending satellite orbits with an additional constraint provided by the azimuth of the horizontal component of secular velocities from GPS data. The resulting high-resolution surface velocities are differentiated to obtain a map of maximum shear strain rate. Joint inversions of InSAR and GPS data suggest that the hypothesized blind segment of the Clark fault and the Coyote Creek fault have slip rates of 13 3mm/yr and 5 4mm/yr, respectively. The blind southern segment of the Clark fault thus appears to be the main active strand of the SJF, posing a currently unrecognized seismic hazard.

2016
Mitchell, EK, Fialko Y, Brown KM.  2016.  Velocity-weakening behavior of Westerly granite at temperature up to 600 degrees C. Journal of Geophysical Research-Solid Earth. 121:6932-6946.   10.1002/2016jb013081   AbstractWebsite

The deep limit to seismicity in continental crust is believed to be controlled by a transition from velocity-weakening to velocity-strengthening friction based on experimental measurements of the rate dependence of friction at different temperatures. Available experimental data on granite suggest a transition to stable creep at about 350 degrees C (approximate to 15km depth). Here we present results from unconfined experiments on Westerly granite at both dry and hydrated conditions that show increasingly unstable slip (velocity-weakening behavior) at temperature up to 600 degrees C. A comparison of previously published experimental results with those presented in this study suggests that the rate and state friction parameters strongly depend on normal stress and pore pressure at high (>400 degrees C) temperature, which may help explain regional variations in the depth distribution of earthquakes in continental crust. Temperature dependence of the rate and state friction parameters may also contribute to strong dynamic weakening observed in high-speed friction experiments on crystalline rocks such as granite and gabbro.

2015
Wang, K, Fialko Y.  2015.  Slip model of the 2015 M-w 7.8 Gorkha (Nepal) earthquake from inversions of ALOS-2 and GPS data. Geophysical Research Letters. 42:7452-7458.   10.1002/2015gl065201   AbstractWebsite

We use surface deformation measurements including Interferometric Synthetic Aperture Radar data acquired by the ALOS-2 mission of the Japanese Aerospace Exploration Agency and Global Positioning System (GPS) data to invert for the fault geometry and coseismic slip distribution of the 2015 M-w 7.8 Gorkha earthquake in Nepal. Assuming that the ruptured fault connects to the surface trace of the Main Frontal Thrust (MFT) fault between 84.34 degrees E and 86.19 degrees E, the best fitting model suggests a dip angle of 7 degrees. The moment calculated from the slip model is 6.08 x 10(20)Nm, corresponding to the moment magnitude of 7.79. The rupture of the 2015 Gorkha earthquake was dominated by thrust motion that was primarily concentrated in a 150km long zone 50 to 100km northward from the surface trace of the Main Frontal Thrust (MFT), with maximum slip of approximate to 5.8m at a depth of approximate to 8km. Data thus indicate that the 2015 Gorkha earthquake ruptured a deep part of the seismogenic zone, in contrast to the 1934 Bihar-Nepal earthquake, which had ruptured a shallow part of the adjacent fault segment to the east.

2013
Kaneko, Y, Fialko Y, Sandwell DT, Tong X, Furuya M.  2013.  Interseismic deformation and creep along the central section of the North Anatolian Fault (Turkey): InSAR observations and implications for rate-and-state friction properties. Journal of Geophysical Research-Solid Earth. 118:316-331.   10.1029/2012jb009661   AbstractWebsite

We present high-resolution measurements of interseismic deformation along the central section of the North Anatolian Fault (NAF) in Turkey using interferometric synthetic aperture radar data from the Advanced Land Observing Satellite and Envisat missions. We generated maps of satellite line-of-sight velocity using five ascending Advanced Land Observing Satellite tracks and one descending Envisat track covering the NAF between 31.2 degrees E and 34.3 degrees E. The line-of-sight velocity reveals discontinuities of up to similar to 5 mm/yr across the Ismetpasa segment of the NAF, implying surface creep at a rate of similar to 9 mm/yr; this is a large fraction of the inferred slip rate of the NAF (21-25 mm/yr). The lateral extent of significant surface creep is about 75 km. We model the inferred surface velocity and shallow fault creep using numerical simulations of spontaneous earthquake sequences that incorporate laboratory-derived rate and state friction. Our results indicate that frictional behavior in the Ismetpasa segment is velocity strengthening at shallow depths and transitions to velocity weakening at a depth of 3-6 km. The inferred depth extent of shallow fault creep is 5.5-7 km, suggesting that the deeper locked portion of the partially creeping segment is characterized by a higher stressing rate, smaller events, and shorter recurrence interval. We also reproduce surface velocity in a locked segment of the NAF by fault models with velocity-weakening conditions at shallow depth. Our results imply that frictional behavior in a shallow portion of major active faults with little or no shallow creep is mostly velocity weakening. Citation: Kaneko, Y., Y. Fialko, D. T. Sandwell, X. Tong, and M. Furuya (2013), Interseismic deformation and creep along the central section of the North Anatolian Fault (Turkey): InSAR observations and implications for rate-and-state friction properties, J. Geophys. Res. Solid Earth, 118, 316-331, doi: 10.1029/2012JB009661.

Takeuchi, CS, Fialko Y.  2013.  On the effects of thermally weakened ductile shear zones on postseismic deformation. Journal of Geophysical Research-Solid Earth. 118:6295-6310.   10.1002/2013jb010215   AbstractWebsite

We present three-dimensional (3-D) numerical models of postseismic deformation following repeated earthquakes on a vertical strike-slip fault. Our models use linear Maxwell, Burgers, and temperature-dependent power law rheology for the lower crust and upper mantle. We consider effects of viscous shear zones that result from thermomechanical coupling and investigate potential kinematic similarities between viscoelastic models incorporating shear zones and elastic models incorporating rate-strengthening friction on a deep aseismic fault root. We find that the thermally activated shear zones have little effect on postseismic relaxation. In particular, the presence of shear zones does not change the polarity of vertical displacements in cases of rheologies that are able to generate robust postseismic transients. Stronger rheologies can give rise to an opposite polarity of vertical displacements, but the amplitude of the predicted transient deformation is generally negligible. We conclude that additional (to thermomechanical coupling) mechanisms of strain localization are required for a viscoelastic model to produce a vertical deformation pattern similar to that due to afterslip on a deep extension of a fault. We also investigate the discriminating power of models incorporating Burgers and power law rheology. These rheologies were proposed to explain postseismic transients following large (M7) earthquakes in the Mojave desert, Eastern California. Numerical simulations indicate that it may be difficult to distinguish between these rheologies even with high-quality geodetic observations for observation periods less than a decade. Longer observations, however, may potentially allow discrimination between the competing models, as illustrated by the model comparisons with available GPS and interferometric synthetic aperture radar data.

2010
Barbot, S, Fialko Y.  2010.  A unified continuum representation of post-seismic relaxation mechanisms: semi-analytic models of afterslip, poroelastic rebound and viscoelastic flow. Geophysical Journal International. 182:1124-1140.   10.1111/j.1365-246X.2010.04678.x   AbstractWebsite

P>We present a unified continuum mechanics representation of the mechanisms believed to be commonly involved in post-seismic transients such as viscoelasticity, fault creep and poroelasticity. The time-dependent relaxation that follows an earthquake, or any other static stress perturbation, is considered in a framework of a generalized viscoelastoplastic rheology whereby some inelastic strain relaxes a physical quantity in the material. The relaxed quantity is the deviatoric stress in case of viscoelastic relaxation, the shear stress in case of creep on a fault plane and the trace of the stress tensor in case of poroelastic rebound. In this framework, the instantaneous velocity field satisfies the linear inhomogeneous Navier's equation with sources parametrized as equivalent body forces and surface tractions. We evaluate the velocity field using the Fourier-domain Green's function for an elastic half-space with surface buoyancy boundary condition. The accuracy of the proposed method is demonstrated by comparisons with finite-element simulations of viscoelastic relaxation following strike-slip and dip-slip ruptures for linear and power-law rheologies. We also present comparisons with analytic solutions for afterslip driven by coseismic stress changes. Finally, we demonstrate that the proposed method can be used to model time-dependent poroelastic rebound by adopting a viscoelastic rheology with bulk viscosity and work hardening. The proposed method allows one to model post-seismic transients that involve multiple mechanisms (afterslip, poroelastic rebound, ductile flow) with an account for the effects of gravity, non-linear rheologies and arbitrary spatial variations in inelastic properties of rocks (e.g. the effective viscosity, rate-and-state frictional parameters and poroelastic properties).

Barbot, S, Fialko Y.  2010.  Fourier-domain Green's function for an elastic semi-infinite solid under gravity, with applications to earthquake and volcano deformation. Geophysical Journal International. 182:568-582.   10.1111/j.1365-246X.2010.04655.x   AbstractWebsite

We present an analytic solution in the Fourier domain for an elastic deformation in a semi-infinite solid due to an arbitrary surface traction. We generalize the so-called Boussinesq's and Cerruti's problems to include a restoring buoyancy boundary condition at the surface. Buoyancy due to a large density contrast at the Earth's surface is an approximation to the full effect of gravity that neglects the perturbation of the gravitational potential and the change in density in the interior. Using the perturbation method, and assuming that the effect of gravity is small compared to the elastic deformation, we derive an approximation in the space domain to the Boussinesq's problem that accounts for a buoyancy boundary condition at the surface. The Fourier- and space-domain solutions are shown to be in good agreement. Numerous problems of elastostatic or quasi-static time-dependent deformation relevant to faulting in the Earth's interior (including inelastic deformation) can be modelled using equivalent body forces and surface tractions. Solving the governing equations with the elastic Green's function in the space domain can be impractical as the body force can be distributed over a large volume. We present a computationally efficient method to evaluate the elastic deformation in a 3-D half space due to the presence of an arbitrary distribution of internal forces and tractions at the surface of the half space. We first evaluate the elastic deformation in a periodic Cartesian volume in the Fourier domain, then use the analytic solutions to the generalized Boussinesq's and Cerruti's problems to satisfy the prescribed mixed boundary condition at the surface. We show some applications for magmatic intrusions and faulting. This approach can be used to solve elastostatic problems involving spatially heterogeneous elastic properties (by employing a homogenization method) and time-dependent problems such as non-linear viscoelastic relaxation, poroelastic rebound and non-steady fault creep under the assumption of spatially homogeneous elastic properties.

Tong, XP, Sandwell DT, Fialko Y.  2010.  Coseismic slip model of the 2008 Wenchuan earthquake derived from joint inversion of interferometric synthetic aperture radar, GPS, and field data. Journal of Geophysical Research-Solid Earth. 115   10.1029/2009jb006625   AbstractWebsite

We derived a coseismic slip model for the M(w) 7.9 2008 Wenchuan earthquake on the basis of radar line-of-sight displacements from ALOS interferograms, GPS vectors, and geological field data. Available interferometric synthetic aperture radar (InSAR) data provided a nearly complete coverage of the surface deformation along both ascending (fine beam mode) and descending orbits (ScanSAR to ScanSAR mode). The earthquake was modeled using four subfaults with variable geometry and dip to capture the simultaneous rupture of both the Beichuan fault and the Pengguan fault. Our model misfits show that the InSAR and GPS data are highly compatible; the combined inversion yields a 93% variance reduction. The best fit model has fault planes that rotate from shallow dip in the south (35 degrees) to nearly vertical dip toward the north (70 degrees). Our rupture model is complex with variations in both depth and rake along two major fault strands. In the southern segment of the Beichuan fault, the slip is mostly thrust (<13 m) and occurred principally in the upper 10 km of the crust; the rupture progressively transformed to right-lateral strike slip as it propagated northeast (with maximum offsets of 7 m). Our model suggests that most of the moment release was limited to the shallow part of the crust (depth less than 10 km). We did not find any "shallow slip deficit" in the slip depth distribution of this mixed mechanism earthquake. Aftershocks were primarily distributed below the section of the fault that ruptured coseismically.

2008
Barbot, S, Hamiel Y, Fialko Y.  2008.  Space geodetic investigation of the coseismic and postseismic deformation due to the 2003 M(w)7.2 Altai earthquake: Implications for the local lithospheric rheology. Journal of Geophysical Research-Solid Earth. 113   10.1029/2007jb005063   AbstractWebsite

We use Envisat Advanced Synthetic Aperture Radar data and SPOT optical imagery to investigate the coseismic and postseismic deformation due to the 27 September 2003, M(w)7.2 Altai earthquake, which occurred in the Chuya Basin near the Russia-China-Mongolia border. On the basis of the synthetic aperture radar (SAR) and SPOT data, we determined the rupture location and developed a coseismic slip model for the Altai earthquake. The inferred rupture location is in a good agreement with field observations, and the geodetic moment from our slip model is consistent with the seismic moment determined from the teleseismic data. While the epicentral area of the Altai earthquake is not optimal for radar interferometry (in particular, due to temporal decorrelation), we were able to detect a transient signal over a time period of 3 years following the earthquake. The signal is robust in that it allows us to discriminate among several commonly assumed mechanisms of postseismic relaxation. We find that the postearthquake interferometric SAR data do not warrant poroelastic rebound in the upper crust. The observed deformation also disagrees with linear viscoelastic relaxation in the upper mantle or lower crust, giving rise to a lower bound on the dynamic viscosity of the lower crust of the order of 10(19) Pa s. The data can be explained in terms of fault slip within the seismogenic zone, on the periphery of areas with high coseismic slip. Most of the postseismic deformation can be explained in terms of seismic moment release in aftershocks; some shallow slip may have also occurred aseismically. Therefore the observed postseismic deformation due to the Altai earthquake is qualitatively different from deformation due to other similarly sized earthquakes, in particular, the Landers and Hector Mine earthquakes in the Mojave desert, southern California. The observed variations in the deformation pattern may be indicative of different rheologic structure of the continental lithosphere in different tectonically active areas.

Barbot, S, Fialko Y, Sandwell D.  2008.  Effect of a compliant fault zone on the inferred earthquake slip distribution. Journal of Geophysical Research-Solid Earth. 113   10.1029/2007jb005256   AbstractWebsite

We present a new semi-analytic method to evaluate the deformation due to a screw dislocation in arbitrarily heterogeneous and/or anisotropic elastic half plane. The method employs integral transformations to reduce the governing partial differential equations to the integral Fredholm equation of the second kind. Dislocation sources, as well as spatial perturbations in the elastic properties are modeled using equivalent body forces. The solution to the Fredholm equation is obtained in the Fourier domain using a method of successive over-relaxation, and is mapped into the spatial domain using the inverse Fast Fourier Transform. We apply this method to investigate the effect of a soft damage zone around an earthquake fault on the co-seismic displacement field, and on the earthquake slip distribution inferred from inversions of geodetic data. In the presence of a kilometer-wide damage zone with a reduction of the effective shear modulus of a factor of 2, inversions that assume a laterally homogeneous model tend to underestimate the amount of slip in the middle of the seismogenic layer by as much as 20%. This bias may accentuate the inferred maxima in the seismic moment release at depth between 3-6 km suggested by previous studies of large strike-slip earthquakes.

2007
Hamiel, Y, Fialko Y.  2007.  Structure and mechanical properties of faults in the North Anatolian Fault system from InSAR observations of coseismic deformation due to the 1999 Izmit (Turkey) earthquake. Journal of Geophysical Research-Solid Earth. 112   10.1029/2006jb004777   AbstractWebsite

We study the structure and mechanical properties of faults in the North Anatolian Fault system by observing near-fault deformation induced by the 1999 M-w 7.4 Izmit earthquake (Turkey). We use interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System observations to analyze the coseismic surface deformation in the near field of the Izmit rupture. The overall observed coseismic deformation is consistent with deformation predicted by a dislocation model assuming a uniform elastic crust. Previous InSAR studies revealed small-scale changes in the radar range across the nearby faults of the North Anatolian fault system (in particular, the Mudurnu Valley and Iznik faults) (e.g., Wright et al., 2001). We demonstrate that these anomalous range changes are consistent with an elastic response of compliant fault zones to the stress perturbation induced by the Izmit earthquake. We examine the spatial variations and mechanical properties of fault zones around the Mudurnu Valley and Iznik faults using three-dimensional finite element models. In these models, we include compliant fault zones having various geometries and elastic properties and apply stress changes deduced from a kinematic slip model of the Izmit earthquake. The best fitting models suggest that the inferred fault zones have a characteristic width of a few kilometers, depth in excess of 10 km, and reductions in the effective shear modulus of about a factor of 3 compared to the surrounding rocks. The characteristic width of the best fitting fault zone models is consistent with field observations along the North Anatolian Fault system (Ambraseys, 1970). Our results are also in agreement with InSAR observations of small-scale deformation on faults in the Eastern California Shear Zone in response to the 1992 Landers and 1999 Hector Mine earthquakes (Fialko et al., 2002; Fialko, 2004). The inferred compliant fault zones likely represent intense damage and may be quite commonly associated with large crustal faults.

2002
Fialko, Y, Sandwell D, Agnew D, Simons M, Shearer P, Minster B.  2002.  Deformation on nearby faults induced by the 1999 Hector Mine earthquake. Science. 297:1858-1862.   10.1126/science.1074671   AbstractWebsite

Interferometric Synthetic Aperture Radar observations of surface deformation due to the 1999 Hector Mine earthquake reveal motion on several nearby faults of the eastern California shear zone. We document both vertical and horizontal displacements of several millimeters to several centimeters across kilometer-wide zones centered on pre-existing faults. Portions of some faults experienced retrograde (that is, opposite to their long-term geologic slip) motion during or shortly after the earthquake. The observed deformation likely represents elastic response of compliant fault zones to the permanent co-seismic stress changes. The induced fault displacements imply decreases in the effective shear modulus within the kilometer-wide fault zones, indicating that the latter are mechanically distinct from the ambient crustal rocks.

2001
Fialko, Y, Khazan Y, Simons M.  2001.  Deformation due to a pressurized horizontal circular crack in an elastic half-space, with applications to volcano geodesy. Geophysical Journal International. 146:181-190.   10.1046/j.1365-246X.2001.00452.x   AbstractWebsite

We consider deformation due to sill-like magma intrusions using a model of a horizontal circular crack in a semi-infinite elastic solid. We present exact expressions for vertical and horizontal displacements of the free surface of a half-space, and calculate surface displacements for a special case of a uniformly pressurized crack. We derive expressions for other observable geophysical parameters, such as the volume of a surface uplift/subsidence, and the corresponding volume change due to fluid injection/withdrawal at depth. We demonstrate that for essentially oblate (i.e. sill-like) source geometries the volume change at the source always equals the volume of the displaced material at the surface of a half-space. Our solutions compare favourably to a number of previously published approximate models. Surface deformation due to a 'point' crack (that is, a crack with a large depth-to-radius ratio) differs appreciably from that due to an isotropic point source ('Mogi model'). Geodetic inversions that employ only one component of deformation (either vertical or horizontal) are unlikely to resolve the overall geometry of subsurface deformation sources even in a simplest case of axisymmetric deformation. Measurements of a complete vector displacement field at the Earth's surface may help to constrain the depth and morphology of active magma reservoirs. However, our results indicate that differences in surface displacements due to various axisymmetric sources may be subtle. In particular, the sill-like and pluton-like magma chambers may give rise to differences in the ratio of maximum horizontal displacements to maximum vertical displacements (a parameter that is most indicative of the source geometry) that are less than 30 per cent. Given measurement errors in geodetic data, such differences may be hard to distinguish.