Publications

Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
2016
Jiang, JL, Fialko Y.  2016.  Reconciling seismicity and geodetic locking depths on the Anza section of the San Jacinto fault. Geophysical Research Letters. 43:10663-10671.   10.1002/2016gl071113   AbstractWebsite

Observations from the Anza section of the San Jacinto Fault in Southern California reveal that microseismicity extends to depths of 15-18km, while the geodetically determined locking depth is less than similar to 10km. This contrasts with observations from other major faults in the region and also with predictions of fault models assuming a simple layered distribution of frictional properties with depth. We suggest that an anomalously shallow geodetic fault locking may result from a transition zone at the bottom of seismogenic layer with spatially heterogeneous frictional properties. Numerical models of faults that incorporate stochastic heterogeneity at transitional depths successfully reproduce the observed depth relation between seismicity and geodetic locking, as well as complex spatiotemporal patterns of microseismicity with relatively scarce repeating earthquakes. Our models predict propagation of large earthquakes to the bottom of the transition zone, and ubiquitous aseismic transients below the locked zone, potentially observable using high-precision geodetic techniques.

Mitchell, EK, Fialko Y, Brown KM.  2016.  Velocity-weakening behavior of Westerly granite at temperature up to 600 degrees C. Journal of Geophysical Research-Solid Earth. 121:6932-6946.   10.1002/2016jb013081   AbstractWebsite

The deep limit to seismicity in continental crust is believed to be controlled by a transition from velocity-weakening to velocity-strengthening friction based on experimental measurements of the rate dependence of friction at different temperatures. Available experimental data on granite suggest a transition to stable creep at about 350 degrees C (approximate to 15km depth). Here we present results from unconfined experiments on Westerly granite at both dry and hydrated conditions that show increasingly unstable slip (velocity-weakening behavior) at temperature up to 600 degrees C. A comparison of previously published experimental results with those presented in this study suggests that the rate and state friction parameters strongly depend on normal stress and pore pressure at high (>400 degrees C) temperature, which may help explain regional variations in the depth distribution of earthquakes in continental crust. Temperature dependence of the rate and state friction parameters may also contribute to strong dynamic weakening observed in high-speed friction experiments on crystalline rocks such as granite and gabbro.

2013
Mitchell, EK, Fialko Y, Brown KM.  2013.  Temperature dependence of frictional healing of Westerly granite: Experimental observations and numerical simulations. Geochemistry Geophysics Geosystems. 14:567-582.   10.1029/2012gc004241   AbstractWebsite

Temperature is believed to have an important control on frictional properties of rocks, yet the amount of experimental observations of time-dependent rock friction at high temperatures is rather limited. In this study, we investigated frictional healing of Westerly granite in a series of slide-hold-slide experiments using a direct shear apparatus at ambient temperatures between 20 degrees C and 550 degrees C. We observed that at room temperature coefficient of friction increases in proportion to the logarithm of hold time at a rate consistent with findings of previous studies. For a given hold time, the coefficient of friction linearly increases with temperature, but temperature has little effect on the rate of change in static friction with hold time. We used a numerical model to investigate whether time-dependent increases in real contact area between rough surfaces could account for the observed frictional healing. The model incorporates fractal geometry and temperature-dependent viscoelasoplastic rheology. We explored several candidate rheologies that have been proposed for steady state creep of rocks at high stresses and temperatures. None of the tested laws could provide an agreement between the observed and modeled healing behavior given material properties reported in the bulk creep experiments. An acceptable fit to the experimental data could be achieved with modified parameters. In particular, for the power-law rheology to provide a reasonable fit to the data, the stress exponent needs to be greater than 40. Alternative mechanisms include time-dependent gouge compaction and increases in bond strength between contacting asperities.

2004
Fialko, Y.  2004.  Temperature fields generated by the elastodynamic propagation of shear cracks in the Earth. Journal of Geophysical Research-Solid Earth. 109   10.1029/2003jb002497   AbstractWebsite

Thermal perturbations associated with seismic slip on faults may significantly affect the dynamic friction and the mechanical energy release during earthquakes. This paper investigates details of the coseismic temperature increases associated with the elastodynamic propagation of shear cracks and effects of fault heating on the dynamic fault strength. Self-similar solutions are presented for the temperature evolution on a surface of a mode II shear crack and a self-healing pulse rupturing at a constant velocity. The along-crack temperature distribution is controlled by a single parameter, the ratio of the crack thickness to the width of the conductive thermal boundary layer, (w) over bar. For "thick'' cracks, or at early stages of rupture ((w) over bar > 1), the local temperature on the crack surface is directly proportional to the amount of slip. For "thin'' cracks, or at later times ((w) over bar < 1), the temperature maximum shifts toward the crack tip. For faults having slip zone thickness of the order of centimeters or less, the onset of thermally induced phenomena (e.g., frictional melting, thermal pressurization, etc.) may occur at any point along the rupture, depending on the degree of slip localization and rupture duration. In the absence of significant increases in the pore fluid pressure, localized fault slip may raise temperature by several hundred degrees, sufficient to cause melting. The onset of frictional melting may give rise to substantial increases in the effective fault strength due to an increase in the effective fault contact area, and high viscosity of silicate melts near solidus. The inferred transient increases in the dynamic friction ("viscous braking'') are consistent with results of high-speed rock sliding experiments and might explain field observations of the fault wall rip-out structures associated with pseudotachylites. Possible effects of viscous braking on the earthquake rupture dynamics include (1) delocalization of slip and increases in the effective fracture energy, (2) transition from a crack-like to a pulse-like rupture propagation, or (3) ultimate rupture arrest. Assuming that the pulse-like ruptures heal by incipient fusion, the seismologic observations can be used to place a lower bound on the dynamic fault friction. This bound is found to be of the order of several megapascals, essentially independent of the earthquake size. Further experimental and theoretical studies of melt rheology at high strain rates are needed to quantify the effects of melting on the dynamic fault strength.