Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
Mitchell, EK, Fialko Y, Brown KM.  2016.  Velocity-weakening behavior of Westerly granite at temperature up to 600 degrees C. Journal of Geophysical Research-Solid Earth. 121:6932-6946.   10.1002/2016jb013081   AbstractWebsite

The deep limit to seismicity in continental crust is believed to be controlled by a transition from velocity-weakening to velocity-strengthening friction based on experimental measurements of the rate dependence of friction at different temperatures. Available experimental data on granite suggest a transition to stable creep at about 350 degrees C (approximate to 15km depth). Here we present results from unconfined experiments on Westerly granite at both dry and hydrated conditions that show increasingly unstable slip (velocity-weakening behavior) at temperature up to 600 degrees C. A comparison of previously published experimental results with those presented in this study suggests that the rate and state friction parameters strongly depend on normal stress and pore pressure at high (>400 degrees C) temperature, which may help explain regional variations in the depth distribution of earthquakes in continental crust. Temperature dependence of the rate and state friction parameters may also contribute to strong dynamic weakening observed in high-speed friction experiments on crystalline rocks such as granite and gabbro.

Mitchell, EK, Fialko Y, Brown KM.  2015.  Frictional properties of gabbro at conditions corresponding to slow slip events in subduction zones. Geochemistry Geophysics Geosystems. 16:4006-4020.   10.1002/2015gc006093   AbstractWebsite

We conducted a series of experiments to explore the rate and state frictional properties of gabbro at conditions thought to be representative of slow slip events (SSEs) in subduction zones. The experiments were conducted using a heated direct shear apparatus. We tested both solid and simulated gouge samples at low effective normal stress (5-30 MPa) over a broad range of temperatures (20-600 degrees C) under dry and hydrated conditions. In tests performed on dry solid samples, we observed stable sliding at low temperatures (20-150 degrees C), stick slip at high temperatures (350-600 degrees C), and a transitional "episodic slow slip'' behavior at intermediate temperatures (200-300 degrees C). In tests performed on dry gouge samples, we observed stable sliding at all temperatures. Under hydrated conditions, the gouge samples exhibited episodic slow slip and stick-slip behavior at temperatures between 300 and 500 degrees C. Our results show a decrease in the rate parameter (a - b) with temperature for both solid and gouge samples; friction transitions from velocity strengthening to velocity weakening at temperature of about 150 degrees C for both solid and gouge samples. We do not observe transition to velocity-strengthening friction at the high end of the tested temperature range. Our results suggest that the occurrence of slow slip events and the downdip limit of the seismogenic zone on subduction megathrusts cannot be solely explained by the temperature dependence of frictional properties of gabbro. Further experimental studies are needed to evaluate the effects of water fugacity and compositional heterogeneity (e. g., the presence of phyllosilicates) on frictional stability of subduction megathrusts.

Mitchell, EK, Fialko Y, Brown KM.  2013.  Temperature dependence of frictional healing of Westerly granite: Experimental observations and numerical simulations. Geochemistry Geophysics Geosystems. 14:567-582.   10.1029/2012gc004241   AbstractWebsite

Temperature is believed to have an important control on frictional properties of rocks, yet the amount of experimental observations of time-dependent rock friction at high temperatures is rather limited. In this study, we investigated frictional healing of Westerly granite in a series of slide-hold-slide experiments using a direct shear apparatus at ambient temperatures between 20 degrees C and 550 degrees C. We observed that at room temperature coefficient of friction increases in proportion to the logarithm of hold time at a rate consistent with findings of previous studies. For a given hold time, the coefficient of friction linearly increases with temperature, but temperature has little effect on the rate of change in static friction with hold time. We used a numerical model to investigate whether time-dependent increases in real contact area between rough surfaces could account for the observed frictional healing. The model incorporates fractal geometry and temperature-dependent viscoelasoplastic rheology. We explored several candidate rheologies that have been proposed for steady state creep of rocks at high stresses and temperatures. None of the tested laws could provide an agreement between the observed and modeled healing behavior given material properties reported in the bulk creep experiments. An acceptable fit to the experimental data could be achieved with modified parameters. In particular, for the power-law rheology to provide a reasonable fit to the data, the stress exponent needs to be greater than 40. Alternative mechanisms include time-dependent gouge compaction and increases in bond strength between contacting asperities.

Kaneko, Y, Fialko Y.  2011.  Shallow slip deficit due to large strike-slip earthquakes in dynamic rupture simulations with elasto-plastic off-fault response. Geophysical Journal International. 186:1389-1403.   10.1111/j.1365-246X.2011.05117.x   AbstractWebsite

Slip inversions of geodetic data from several large (magnitude similar to 7) strike-slip earthquakes point to coseismic slip deficit at shallow depths (< 3-4 km), that is, coseismic slip appears to decrease towards the Earth surface. While the inferred slip distribution may be consistent with laboratory-derived rate and state friction laws suggesting that the uppermost brittle crust may be velocity strengthening, there remains a question of how the coseismic slip deficit is accommodated throughout the earthquake cycle. The consequence of velocity-strengthening fault friction at shallow depths is that the deficit of coseismic slip is relieved by post-seismic afterslip and interseismic creep. However, many seismic events with inferred shallow slip deficit were not associated with either resolvable shallow interseismic creep or robust shallow afterslip. Hence, the origin of shallow 'slip deficit' remains uncertain. In this study, we investigate whether inelastic failure in the shallow crust due to dynamic earthquake rupture can explain the inferred deficit of shallow slip. Evidence for such failure is emerging from geologic, seismic and geodetic observations. We find that the amount of shallow slip deficit is proportional to the amount of inelastic deformation near the Earth surface. Such deformation occurs under a wide range of parameters that characterize rock strength in the upper crust. However, the largest magnitude of slip deficit in models accounting for off-fault yielding is 2-4 times smaller than that inferred from kinematic inversions of geodetic data. To explain this discrepancy, we further explore to what extent assumptions in the kinematic inversions may bias the inferred slip distributions. Inelastic deformation in the shallow crust reduces coseismic strain near the fault, introducing an additional 'artificial' deficit of up to 10 per cent of the maximum slip in inversions of geodetic data that are based on purely elastic models. The largest magnitude of slip deficit in our models combined with the bias in inversions accounts for up to 25 per cent of shallow slip deficit, which is comparable, but still smaller than 3060 per cent deficit inferred from kinematic inversions. We discuss potential mechanisms that may account for the remaining discrepancy between slip deficit predicted by elasto-plastic rupture models and that inferred from inversions of space geodetic data.