Export 5 results:
Sort by: Author Title Type [ Year  (Desc)]
Wang, K, Fialko Y.  2018.  Observations and modeling of coseismic and postseismic deformation due to the 2015 M-w 7.8 Gorkha (Nepal) earthquake. Journal of Geophysical Research-Solid Earth. 123:761-779.   10.1002/2017jb014620   AbstractWebsite

We use space geodetic data to investigate coseismic and postseismic deformation due to the 2015 M-w 7.8 Gorkha earthquake that occurred along the central Himalayan arc. Because the earthquake area is characterized by strong variations in surface relief and material properties, we developed finite element models that explicitly account for topography and 3-D elastic structure. We computed the line-of-sight displacement histories from three tracks of the Sentinel-1A/B Interferometric Synthetic Aperture Radar (InSAR) satellites, using persistent scatter method. InSAR observations reveal an uplift of up to approximate to 70mm over approximate to 20months after the main shock, concentrated primarily at the downdip edge of the ruptured asperity. GPS observations also show uplift, as well as southward movement in the epicentral area, qualitatively similar to the coseismic deformation pattern. Kinematic inversions of GPS and InSAR data and forward models of stress-driven creep suggest that the observed postseismic transient is dominated by afterslip on a downdip extension of the seismic rupture. A poroelastic rebound may have contributed to the observed uplift and southward motion, but the predicted surface displacements are small. We also tested a wide range of viscoelastic relaxation models, including 1-D and 3-D variations in the viscosity structure. Models of a low-viscosity channel previously invoked to explain the long-term uplift and variations in topography at the plateau margins predict opposite signs of horizontal and vertical displacements compared to those observed. Our results do not preclude a possibility of deep-seated viscoelastic response beneath southern Tibet with a characteristic relaxation time greater than the observation period (2years).

Samsonov, SV, Feng WP, Fialko Y.  2017.  Subsidence at Cerro Prieto Geothermal Field and postseismic slip along the Indiviso fault from 2011 to 2016 RADARSAT-2 DInSAR time series analysis. Geophysical Research Letters. 44:2716-2724.   10.1002/2017gl072690   AbstractWebsite

We present RADARSAT-2 Differential Interferometric Synthetic Aperture Radar (DInSAR) observations of deformation due to fluid extraction at the Cerro Prieto Geothermal Field (CPGF) and afterslip on the 2010 M7.2 El Mayor-Cucapah (EMC) earthquake rupture during 2011-2016. Advanced multidimensional time series analysis reveals subsidence at the CPGF with the maximum rate greater than 100mm/yr accompanied by horizontal motion (radial contraction) at a rate greater than 30mm/yr. During the same time period, more than 30mm of surface creep occurred on the Indiviso fault ruptured by the EMC earthquake. We performed inversions of DInSAR data to estimate the rate of volume changes at depth due to the geothermal production at the CPGF and the distribution of afterslip on the Indiviso fault. The maximum coseismic slip due to the EMC earthquake correlates with the Coulomb stress changes on the Indiviso fault due to fluid extraction at the CPGF. Afterslip occurs on the periphery of maximum coseismic slip areas. Time series analysis indicates that afterslip still occurs 6years after the earthquake.

Wang, K, Fialko Y.  2014.  Space geodetic observations and models of postseismic deformation due to the 2005 M7.6 Kashmir (Pakistan) earthquake. Journal of Geophysical Research-Solid Earth. 119:7306-7318.   10.1002/2014jb011122   AbstractWebsite

We use the L-band Advanced Land Observing Satellite (ALOS) and C-band Envisat interferometric synthetic aperture data and campaign GPS observations to study the postseismic deformation due to the 2005 magnitude 7.6 Kashmir (Pakistan) earthquake that occurred in the northwestern Himalaya. Envisat data are available from both the descending and ascending orbits and span a time period of similar to 4.5years immediately following the earthquake (2005-2010), with nearly monthly acquisitions. However, the Envisat data are highly decorrelated due to high topography and snow cover. ALOS data are available from the ascending orbit and span a time period of similar to 2.5years between 2007 and 2009, over which they remain reasonably well correlated. We derive the mean line-of-sight (LOS) postseismic velocity maps in the epicentral area of the Kashmir earthquake using persistent scatterer method for Envisat data and selective stacking for ALOS data. LOS velocities from all data sets indicate an uplift (decrease in radar range), primarily in the hanging wall of the earthquake rupture over the entire period of synthetic aperture radar observations (2005-2010). Models of poroelastic relaxation predict uplift of both the footwall and the hanging wall, while models of viscoelastic relaxation below the brittle-ductile transition predict subsidence (increase in radar range) in both the footwall and the hanging wall. Therefore, the observed pattern of surface velocities indicates that the early several years of postseismic deformation were dominated by afterslip on the fault plane, possibly with a minor contribution from poroelastic rebound. Kinematic inversions of interferometric synthetic aperture radar and GPS data confirm that the observed deformation is consistent with afterslip, primarily downdip of the seismic asperity. To place constraints on the effective viscosity of the ductile substrate in the study area, we subtract the surface deformation predicted by stress-driven afterslip model from the mean LOS velocities and compare the residuals to models of viscoelastic relaxation for a range of assumed viscosities. We show that in order to prevent surface subsidence, the effective viscosity has to be greater than 10(19)Pas. ations are negligible

Gonzalez-Ortega, A, Fialko Y, Sandwell D, Nava-Pichardo FA, Fletcher J, Gonzalez-Garcia J, Lipovsky B, Floyd M, Funning G.  2014.  El Mayor-Cucapah ( M-w 7.2) earthquake: Early near-field postseismic deformation from InSAR and GPS observations. Journal of Geophysical Research-Solid Earth. 119:1482-1497.   10.1002/2013jb010193   AbstractWebsite

El Mayor-Cucapah earthquake occurred on 4 April 2010 in northeastern Baja California just south of the U.S.-Mexico border. The earthquake ruptured several previously mapped faults, as well as some unidentified ones, including the Pescadores, Borrego, Paso Inferior and Paso Superior faults in the Sierra Cucapah, and the Indiviso fault in the Mexicali Valley and Colorado River Delta. We conducted several Global Positioning System (GPS) campaign surveys of preexisting and newly established benchmarks within 30km of the earthquake rupture. Most of the benchmarks were occupied within days after the earthquake, allowing us to capture the very early postseismic transient motions. The GPS data show postseismic displacements in the same direction as the coseismic displacements; time series indicate a gradual decay in postseismic velocities with characteristic time scales of 669days and 203days, assuming exponential and logarithmic decay, respectively. We also analyzed interferometric synthetic aperture radar (InSAR) data from the Envisat and ALOS satellites. The main deformation features seen in the line-of-sight displacement maps indicate subsidence concentrated in the southern and northern parts of the main rupture, in particular at the Indiviso fault, at the Laguna Salada basin, and at the Paso Superior fault. We show that the near-field GPS and InSAR observations over a time period of 5months after the earthquake can be explained by a combination of afterslip, fault zone contraction, and a possible minor contribution of poroelastic rebound. Far-field data require an additional mechanism, most likely viscoelastic relaxation in the ductile substrate.

Barbot, S, Fialko Y, Bock Y.  2009.  Postseismic deformation due to the M(w) 6.0 2004 Parkfield earthquake: Stress-driven creep on a fault with spatially variable rate-and-state friction parameters. Journal of Geophysical Research-Solid Earth. 114   10.1029/2008jb005748   AbstractWebsite

We investigate the coseismic and postseismic deformation due to the M(w) 6.0 2004 Parkfield, California, earthquake. We produce coseismic and postseismic slip models by inverting data from an array of 14 continuous GPS stations from the SCIGN network. Kinematic inversions of postseismic GPS data over a time period of 3 years show that afterslip occurred in areas of low seismicity and low coseismic slip, predominantly at a depth of similar to 5 km. Inversions suggest that coseismic stress increases were relaxed by predominantly aseismic afterslip on a fault plane. The kinetics of afterslip is consistent with a velocity-strengthening friction generalized to include the case of infinitesimal velocities. We performed simulations of stress-driven creep using a numerical model that evaluates the time-dependent deformation due to coseismic stress changes in a viscoelastoplastic half-space. Starting with a coseismic slip distribution, we compute the time-dependent evolution of afterslip on a fault plane and the associated displacements at the GPS stations. Data are best explained by a rate-strengthening model with frictional parameter (a - b) = 7 x 10(-3), at a high end of values observed in laboratory experiments. We also find that the geodetic moment due to creep is a factor of 100 greater than the cumulative seismic moment of aftershocks. The rate of aftershocks in the top 10 km of the seismogenic zone mirrors the kinetics of afterslip, suggesting that postearthquake seismicity is governed by loading from the nearby aseismic creep. The San Andreas fault around Parkfield is deduced to have large along-strike variations in rate-and-state frictional properties. Velocity strengthening areas may be responsible for the separation of the coseismic slip in two distinct asperities and for the ongoing aseismic creep occurring between the velocity-weakening patches after the 2004 rupture.