Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
Lau, N, Tymofyeyeva E, Fialko Y.  2018.  Variations in the long-term uplift rate due to the Altiplano-Puna magma body observed with Sentinel-1 interferometry. Earth and Planetary Science Letters. 491:43-47.   10.1016/j.epsl.2018.03.026   AbstractWebsite

We present new Interferometric Synthetic Aperture Radar (InSAR) observations of surface deformation in the Altiplano-Puna region (South America) where previous studies documented a broad uplift at an average rate of similar to 10 mm/yr. We use data from the Sentinel-1 satellite mission to produce high-resolution velocity maps and time series of surface displacements between years 2014-2017. The data reveal that the uplift has slowed down substantially compared to the 1992-2010 epoch and is characterized by short-term fluctuations on time scales of months to years. The observed variations in uplift rate may indicate a non-steady supply of melt and/or volatiles from the partially molten Altiplano-Puna Magma Body (APMB) into an incipient diapir forming in the roof of the APMB. (C) 2018 Elsevier B.V. All rights reserved.

Tymofyeyeva, E, Fialko Y.  2018.  Geodetic evidence for a blind fault segment at the southern end of the San Jacinto Fault Zone. Journal of Geophysical Research-Solid Earth. 123:878-891.   10.1002/2017jb014477   AbstractWebsite

The San Jacinto Fault (SJF) splits into several active branches southeast of Anza, including the Clark fault and the Coyote Creek fault. The Clark fault, originally believed to terminate at the southern tip of the Santa Rosa Mountains, was suggested to extend further to the southeast to a junction with the Superstition Hills fault based on space geodetic observations and geologic mapping. We present new interferometric synthetic aperture radar and GPS data that confirm high deformation rates along the southeastern extent of the Clark fault. We derive maps of horizontal and vertical average velocities by combining data from the ascending and descending satellite orbits with an additional constraint provided by the azimuth of the horizontal component of secular velocities from GPS data. The resulting high-resolution surface velocities are differentiated to obtain a map of maximum shear strain rate. Joint inversions of InSAR and GPS data suggest that the hypothesized blind segment of the Clark fault and the Coyote Creek fault have slip rates of 13 3mm/yr and 5 4mm/yr, respectively. The blind southern segment of the Clark fault thus appears to be the main active strand of the SJF, posing a currently unrecognized seismic hazard.

Wang, K, Fialko Y.  2018.  Observations and modeling of coseismic and postseismic deformation due to the 2015 M-w 7.8 Gorkha (Nepal) earthquake. Journal of Geophysical Research-Solid Earth. 123:761-779.   10.1002/2017jb014620   AbstractWebsite

We use space geodetic data to investigate coseismic and postseismic deformation due to the 2015 M-w 7.8 Gorkha earthquake that occurred along the central Himalayan arc. Because the earthquake area is characterized by strong variations in surface relief and material properties, we developed finite element models that explicitly account for topography and 3-D elastic structure. We computed the line-of-sight displacement histories from three tracks of the Sentinel-1A/B Interferometric Synthetic Aperture Radar (InSAR) satellites, using persistent scatter method. InSAR observations reveal an uplift of up to approximate to 70mm over approximate to 20months after the main shock, concentrated primarily at the downdip edge of the ruptured asperity. GPS observations also show uplift, as well as southward movement in the epicentral area, qualitatively similar to the coseismic deformation pattern. Kinematic inversions of GPS and InSAR data and forward models of stress-driven creep suggest that the observed postseismic transient is dominated by afterslip on a downdip extension of the seismic rupture. A poroelastic rebound may have contributed to the observed uplift and southward motion, but the predicted surface displacements are small. We also tested a wide range of viscoelastic relaxation models, including 1-D and 3-D variations in the viscosity structure. Models of a low-viscosity channel previously invoked to explain the long-term uplift and variations in topography at the plateau margins predict opposite signs of horizontal and vertical displacements compared to those observed. Our results do not preclude a possibility of deep-seated viscoelastic response beneath southern Tibet with a characteristic relaxation time greater than the observation period (2years).