Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2018
Tymofyeyeva, E, Fialko Y.  2018.  Geodetic evidence for a blind fault segment at the southern end of the San Jacinto Fault Zone. Journal of Geophysical Research-Solid Earth. 123:878-891.   10.1002/2017jb014477   AbstractWebsite

The San Jacinto Fault (SJF) splits into several active branches southeast of Anza, including the Clark fault and the Coyote Creek fault. The Clark fault, originally believed to terminate at the southern tip of the Santa Rosa Mountains, was suggested to extend further to the southeast to a junction with the Superstition Hills fault based on space geodetic observations and geologic mapping. We present new interferometric synthetic aperture radar and GPS data that confirm high deformation rates along the southeastern extent of the Clark fault. We derive maps of horizontal and vertical average velocities by combining data from the ascending and descending satellite orbits with an additional constraint provided by the azimuth of the horizontal component of secular velocities from GPS data. The resulting high-resolution surface velocities are differentiated to obtain a map of maximum shear strain rate. Joint inversions of InSAR and GPS data suggest that the hypothesized blind segment of the Clark fault and the Coyote Creek fault have slip rates of 13 3mm/yr and 5 4mm/yr, respectively. The blind southern segment of the Clark fault thus appears to be the main active strand of the SJF, posing a currently unrecognized seismic hazard.

2013
Lindsey, E, Sahakian V, Fialko Y, Bock Y, Barbot S, Rockwell T.  2013.  Interseismic strain localization in the San Jacinto Fault Zone. Pure and Applied Geophysics. :1-18.: Springer Basel   10.1007/s00024-013-0753-z   AbstractWebsite

We investigate interseismic deformation across the San Jacinto fault at Anza, California where previous geodetic observations have indicated an anomalously high shear strain rate. We present an updated set of secular velocities from GPS and InSAR observations that reveal a 2–3 km wide shear zone deforming at a rate that exceeds the background strain rate by more than a factor of two. GPS occupations of an alignment array installed in 1990 across the fault trace at Anza allow us to rule out shallow creep as a possible contributor to the observed strain rate. Using a dislocation model in a heterogeneous elastic half space, we show that a reduction in shear modulus within the fault zone by a factor of 1.2–1.6 as imaged tomographically by Allam and Ben-Zion (Geophys J Int 190:1181–1196, 2012) can explain about 50 % of the observed anomalous strain rate. However, the best-fitting locking depth in this case (10.4 ± 1.3 km) is significantly less than the local depth extent of seismicity (14–18 km). We show that a deep fault zone with a shear modulus reduction of at least a factor of 2.4 would be required to explain fully the geodetic strain rate, assuming the locking depth is 15 km. Two alternative possibilities include fault creep at a substantial fraction of the long-term slip rate within the region of deep microseismicity, or a reduced yield strength within the upper fault zone leading to distributed plastic failure during the interseismic period.