Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2016
Jiang, JL, Fialko Y.  2016.  Reconciling seismicity and geodetic locking depths on the Anza section of the San Jacinto fault. Geophysical Research Letters. 43:10663-10671.   10.1002/2016gl071113   AbstractWebsite

Observations from the Anza section of the San Jacinto Fault in Southern California reveal that microseismicity extends to depths of 15-18km, while the geodetically determined locking depth is less than similar to 10km. This contrasts with observations from other major faults in the region and also with predictions of fault models assuming a simple layered distribution of frictional properties with depth. We suggest that an anomalously shallow geodetic fault locking may result from a transition zone at the bottom of seismogenic layer with spatially heterogeneous frictional properties. Numerical models of faults that incorporate stochastic heterogeneity at transitional depths successfully reproduce the observed depth relation between seismicity and geodetic locking, as well as complex spatiotemporal patterns of microseismicity with relatively scarce repeating earthquakes. Our models predict propagation of large earthquakes to the bottom of the transition zone, and ubiquitous aseismic transients below the locked zone, potentially observable using high-precision geodetic techniques.

2009
Ujiie, K, Tsutsumi A, Fialko Y, Yamaguchi H.  2009.  Experimental investigation of frictional melting of argillite at high slip rates: Implications for seismic slip in subduction-accretion complexes. Journal of Geophysical Research-Solid Earth. 114   10.1029/2008jb006165   AbstractWebsite

Discovery of pseudotachylytes from exhumed accretionary complexes indicates that frictional melting occurred along illite-rich, argillite-derived slip zones during subduction earthquakes. We conducted high-velocity friction experiments on argillite at a slip rate of 1.13 m/s and normal stresses of 2.67-13.33 MPa. Experiments show slip weakening followed by slip strengthening. Slip weakening is associated with the formation and shearing of low-viscosity melt patches. The subsequent slip strengthening occurred despite the reduction in shear strain rate due to the growth (thickening) of melt layer, suggesting that the viscosity of melt layer increased with slip. Microstructural and chemical analyses suggest that the viscosity increase during the slip strengthening is not due to an increase in the volume fraction of solid grains and bubbles in the melt layer but could be caused primarily by dehydration of the melt layer. Our experimental results suggest that viscous braking can be efficient at shallow depths of subduction-accretion complexes if substantial melt dehydration occurs on a timescale of seismic slip. Melt lubrication can possibly occur at greater depths within subduction-accretion complexes because the ratio of viscous shear to normal stress decreases with depth. Argillite-derived natural pseudotachylytes formed at seismogenic depths in subduction-accretion complexes are more hydrous than the experimentally generated pseudotachylytes and may be evidence of nearly complete stress drop.