Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2012
Takeuchi, CS, Fialko Y.  2012.  Dynamic models of interseismic deformation and stress transfer from plate motion to continental transform faults. Journal of Geophysical Research-Solid Earth. 117   10.1029/2011jb009056   AbstractWebsite

We present numerical models of earthquake cycles on a strike-slip fault that incorporate laboratory-derived power law rheologies with Arrhenius temperature dependence, viscous dissipation, conductive heat transfer, and far-field loading due to relative plate motion. We use these models to explore the evolution of stress, strain, and thermal regime on "geologic" timescales (similar to 10(6)-10(7) years), as well as on timescales of the order of the earthquake recurrence (similar to 10(2) years). Strain localization in the viscoelastic medium results from thermomechanical coupling and power law dependence of strain rate on stress. For conditions corresponding to the San Andreas fault (SAF), the predicted width of the shear zone in the lower crust is similar to 3-5 km; this shear zone accommodates more than 50% of the far-field plate motion. Coupled thermomechanical models predict a single-layer lithosphere in case of "dry" composition of the lower crust and upper mantle, and a "jelly sandwich" lithosphere in case of "wet" composition. Deviatoric stress in the lithosphere in our models is relatively insensitive to the water content, the far-field loading rate, and the fault strength and is of the order of 10(2) MPa. Thermomechanical coupling gives rise to an inverse correlation between the fault slip rate and the ductile strength of the lithosphere. We show that our models are broadly consistent with geodetic and heat flow constrains from the SAF in Northern California. Models suggest that the regionally elevated heat flow around the SAF may be at least in part due to viscous dissipation in the ductile part of the lithosphere.

2005
Khazan, Y, Fialko Y.  2005.  Why do kimberlites from different provinces have similar trace element patterns? Geochemistry Geophysics Geosystems. 6   10.1029/2005gc000919   AbstractWebsite

Analysis of the trace element contents in kimberlites from various provinces around the world, including South Africa, India, and Yakutia ( Siberia, Russia), reveals remarkable similarity of the maximum abundances. In addition, we find that abundances of the rare earth elements ( REE) in the South African kimberlites are highly coherent between individual elements. We suggest that the observed similarity of the trace element patterns may result from a common physicochemical process operating in the kimberlite source region, rather than from peculiar source compositions and magmatic histories. The most likely candidates for such a process are ( 1) partial melting at very low melting degrees and ( 2) porous melt flow and diffusive exchange with the host rocks. These two processes can produce the same maximum trace element abundances and similar undersaturated patterns. We argue that the porous flow, and the associated chromatographic enrichment, is preferred because it allows high saturations at relatively large melt fractions of similar to 1%. Observations of enrichment of the xenolith grain rims due to an exchange with metasomatizing melts of quasi- kimberlitic composition imply that the melt percolated beyond the source region, in agreement with basic assumptions of the percolation model. We demonstrate that the saturated REE patterns are in a good agreement with the maximum observed REE abundances in kimberlites from different provinces. The theoretical patterns are independent of the melt fraction and only weakly ( if at all) depend on the source modal composition. Characteristic diverging fan- like patterns of trace elements predicted by the percolation model are identified in kimberlites from South Africa. We propose that a high coherency of the REE patterns in the South African kimberlites results from a general dependence of all REE abundances on the calcium content. According to this interpretation, the overall depletion of the source rocks in REE with temperature ( and depth) postulated by our model is a natural consequence of a decrease in the calcium content along the lherzolite trend.