Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2018
Wang, K, Fialko Y.  2018.  Observations and modeling of coseismic and postseismic deformation due to the 2015 M-w 7.8 Gorkha (Nepal) earthquake. Journal of Geophysical Research-Solid Earth. 123:761-779.   10.1002/2017jb014620   AbstractWebsite

We use space geodetic data to investigate coseismic and postseismic deformation due to the 2015 M-w 7.8 Gorkha earthquake that occurred along the central Himalayan arc. Because the earthquake area is characterized by strong variations in surface relief and material properties, we developed finite element models that explicitly account for topography and 3-D elastic structure. We computed the line-of-sight displacement histories from three tracks of the Sentinel-1A/B Interferometric Synthetic Aperture Radar (InSAR) satellites, using persistent scatter method. InSAR observations reveal an uplift of up to approximate to 70mm over approximate to 20months after the main shock, concentrated primarily at the downdip edge of the ruptured asperity. GPS observations also show uplift, as well as southward movement in the epicentral area, qualitatively similar to the coseismic deformation pattern. Kinematic inversions of GPS and InSAR data and forward models of stress-driven creep suggest that the observed postseismic transient is dominated by afterslip on a downdip extension of the seismic rupture. A poroelastic rebound may have contributed to the observed uplift and southward motion, but the predicted surface displacements are small. We also tested a wide range of viscoelastic relaxation models, including 1-D and 3-D variations in the viscosity structure. Models of a low-viscosity channel previously invoked to explain the long-term uplift and variations in topography at the plateau margins predict opposite signs of horizontal and vertical displacements compared to those observed. Our results do not preclude a possibility of deep-seated viscoelastic response beneath southern Tibet with a characteristic relaxation time greater than the observation period (2years).

2009
Ujiie, K, Tsutsumi A, Fialko Y, Yamaguchi H.  2009.  Experimental investigation of frictional melting of argillite at high slip rates: Implications for seismic slip in subduction-accretion complexes. Journal of Geophysical Research-Solid Earth. 114   10.1029/2008jb006165   AbstractWebsite

Discovery of pseudotachylytes from exhumed accretionary complexes indicates that frictional melting occurred along illite-rich, argillite-derived slip zones during subduction earthquakes. We conducted high-velocity friction experiments on argillite at a slip rate of 1.13 m/s and normal stresses of 2.67-13.33 MPa. Experiments show slip weakening followed by slip strengthening. Slip weakening is associated with the formation and shearing of low-viscosity melt patches. The subsequent slip strengthening occurred despite the reduction in shear strain rate due to the growth (thickening) of melt layer, suggesting that the viscosity of melt layer increased with slip. Microstructural and chemical analyses suggest that the viscosity increase during the slip strengthening is not due to an increase in the volume fraction of solid grains and bubbles in the melt layer but could be caused primarily by dehydration of the melt layer. Our experimental results suggest that viscous braking can be efficient at shallow depths of subduction-accretion complexes if substantial melt dehydration occurs on a timescale of seismic slip. Melt lubrication can possibly occur at greater depths within subduction-accretion complexes because the ratio of viscous shear to normal stress decreases with depth. Argillite-derived natural pseudotachylytes formed at seismogenic depths in subduction-accretion complexes are more hydrous than the experimentally generated pseudotachylytes and may be evidence of nearly complete stress drop.