Export 3 results:
Sort by: Author Title [ Type  (Asc)] Year
Journal Article
Jacobs, A, Sandwell D, Fialko Y, Sichoix L.  2002.  The 1999 (M-w 7. 1) Hector Mine, California, earthquake: Near-field postseismic deformation from ERS interferometry. Bulletin of the Seismological Society of America. 92:1433-1442.   10.1785/0120000908   AbstractWebsite

Interferometric synthetic aperture radar (InSAR) data over the area of the Hector Mine earthquake (M-w 7.1, 16 October 1999) reveal postseismic deformation of several centimeters over a spatial scale of 0.5 to 50 km. We analyzed seven SAR acquisitions to form interferograms over four time periods after the event. The main deformations seen in the line-of-sight (LOS) displacement maps are a region of subsidence (60 mm LOS increase) on the northern end of the fault, a region of uplift (45 mm LOS decrease) located to the northeast of the primary fault bend, and a linear trough running along the main rupture having a depth of up to 15 mm and a width of about 2 km. We correlate these features with a double left-bending, right-lateral, strike-slip fault that exhibits contraction on the restraining side and extension along the releasing side of the fault bends. The temporal variations in the near-fault postseismic deformation are consistent with a characteristic time scale of 135 + 42 or - 25 days, which is similar to the relaxation times following the 1992 Landers earthquake. High gradients in the LOS displacements occur on the fault trace, consistent with afterslip on the earthquake rupture. We derive an afterslip model by inverting the LOS data from both the ascending and descending orbits. Our model indicates that much of the afterslip occurs at depths of less than 3 to 4 km.

Takeuchi, CS, Fialko Y.  2013.  On the effects of thermally weakened ductile shear zones on postseismic deformation. Journal of Geophysical Research-Solid Earth. 118:6295-6310.   10.1002/2013jb010215   AbstractWebsite

We present three-dimensional (3-D) numerical models of postseismic deformation following repeated earthquakes on a vertical strike-slip fault. Our models use linear Maxwell, Burgers, and temperature-dependent power law rheology for the lower crust and upper mantle. We consider effects of viscous shear zones that result from thermomechanical coupling and investigate potential kinematic similarities between viscoelastic models incorporating shear zones and elastic models incorporating rate-strengthening friction on a deep aseismic fault root. We find that the thermally activated shear zones have little effect on postseismic relaxation. In particular, the presence of shear zones does not change the polarity of vertical displacements in cases of rheologies that are able to generate robust postseismic transients. Stronger rheologies can give rise to an opposite polarity of vertical displacements, but the amplitude of the predicted transient deformation is generally negligible. We conclude that additional (to thermomechanical coupling) mechanisms of strain localization are required for a viscoelastic model to produce a vertical deformation pattern similar to that due to afterslip on a deep extension of a fault. We also investigate the discriminating power of models incorporating Burgers and power law rheology. These rheologies were proposed to explain postseismic transients following large (M7) earthquakes in the Mojave desert, Eastern California. Numerical simulations indicate that it may be difficult to distinguish between these rheologies even with high-quality geodetic observations for observation periods less than a decade. Longer observations, however, may potentially allow discrimination between the competing models, as illustrated by the model comparisons with available GPS and interferometric synthetic aperture radar data.

Fialko, YA, Rubin AM.  1999.  What controls the along-strike slopes of volcanic rift zones? Journal of Geophysical Research-Solid Earth. 104:20007-20020.   10.1029/1999jb900143   AbstractWebsite

We investigate the dynamics of viscous pressure losses associated with lateral magma transport in volcanic rift zones by performing (I) coupled elastic-hydrodynamic simulations of downrift magma flow in dikes and (2) analog experiments mimicking lateral dike propagation in the presence of an along-rift topographic slope. It is found that near-source eruptions are likely to be favored by shallow slopes while distant downrift eruptions may be encouraged by steeper slopes, provided that along-rift variations in the tectonic stress are negligible or uncorrelated on the timescale of multiple dike intrusions. This implies the existence of a critical slope to which a volcanic rift zone would naturally evolve. Such behavior is produced by three-dimensional (3-D) elastic effects and is controlled by the ratio of the driving pressure gradient due to the along-strike topographic slope to the vertical gradient in the excess magma pressure in the dike. This model may be viewed as complementary to commonly cited mechanisms that appeal to magma viscosity and the dynamics of freezing of lava flows at the surface to explain the low profiles of basaltic shield volcanoes. Our estimated values of the critical slopes are in general agreement with observations in Hawaiian rift zones, but further development of fully 3-D models is required for more accurate predictions.