Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
Mitchell, EK, Fialko Y, Brown KM.  2016.  Velocity-weakening behavior of Westerly granite at temperature up to 600 degrees C. Journal of Geophysical Research-Solid Earth. 121:6932-6946.   10.1002/2016jb013081   AbstractWebsite

The deep limit to seismicity in continental crust is believed to be controlled by a transition from velocity-weakening to velocity-strengthening friction based on experimental measurements of the rate dependence of friction at different temperatures. Available experimental data on granite suggest a transition to stable creep at about 350 degrees C (approximate to 15km depth). Here we present results from unconfined experiments on Westerly granite at both dry and hydrated conditions that show increasingly unstable slip (velocity-weakening behavior) at temperature up to 600 degrees C. A comparison of previously published experimental results with those presented in this study suggests that the rate and state friction parameters strongly depend on normal stress and pore pressure at high (>400 degrees C) temperature, which may help explain regional variations in the depth distribution of earthquakes in continental crust. Temperature dependence of the rate and state friction parameters may also contribute to strong dynamic weakening observed in high-speed friction experiments on crystalline rocks such as granite and gabbro.

Lindsey, EO, Fialko Y.  2016.  Geodetic constraints on frictional properties and earthquake hazard in the Imperial Valley, Southern California. Journal of Geophysical Research-Solid Earth. 121:1097-1113.   10.1002/2015jb012516   AbstractWebsite

We analyze a suite of geodetic observations across the Imperial Fault in southern California that span all parts of the earthquake cycle. Coseismic and postseismic surface slips due to the 1979 M 6.6 Imperial Valley earthquake were recorded with trilateration and alignment surveys by Harsh (1982) and Crook et al. (1982), and interseismic deformation is measured using a combination of multiple interferometric synthetic aperture radar (InSAR)-viewing geometries and continuous and survey-mode GPS. In particular, we combine more than 100 survey-mode GPS velocities with InSAR data from Envisat descending tracks 84 and 356 and ascending tracks 77 and 306 (149 total acquisitions), processed using a persistent scatterers method. The result is a dense map of interseismic velocities across the Imperial Fault and surrounding areas that allows us to evaluate the rate of interseismic loading and along-strike variations in surface creep. We compare available geodetic data to models of the earthquake cycle with rate- and state-dependent friction and find that a complete record of the earthquake cycle is required to constrain key fault properties including the rate-dependence parameter (a - b) as a function of depth, the extent of shallow creep, and the recurrence interval of large events. We find that the data are inconsistent with a high (>30mm/yr) slip rate on the Imperial Fault and investigate the possibility that an extension of the San Jacinto-Superstition Hills Fault system through the town of El Centro may accommodate a significant portion of the slip previously attributed to the Imperial Fault. Models including this additional fault are in better agreement with the available observations, suggesting that the long-term slip rate of the Imperial Fault is lower than previously suggested and that there may be a significant unmapped hazard in the western Imperial Valley.

Mitchell, EK, Fialko Y, Brown KM.  2015.  Frictional properties of gabbro at conditions corresponding to slow slip events in subduction zones. Geochemistry Geophysics Geosystems. 16:4006-4020.   10.1002/2015gc006093   AbstractWebsite

We conducted a series of experiments to explore the rate and state frictional properties of gabbro at conditions thought to be representative of slow slip events (SSEs) in subduction zones. The experiments were conducted using a heated direct shear apparatus. We tested both solid and simulated gouge samples at low effective normal stress (5-30 MPa) over a broad range of temperatures (20-600 degrees C) under dry and hydrated conditions. In tests performed on dry solid samples, we observed stable sliding at low temperatures (20-150 degrees C), stick slip at high temperatures (350-600 degrees C), and a transitional "episodic slow slip'' behavior at intermediate temperatures (200-300 degrees C). In tests performed on dry gouge samples, we observed stable sliding at all temperatures. Under hydrated conditions, the gouge samples exhibited episodic slow slip and stick-slip behavior at temperatures between 300 and 500 degrees C. Our results show a decrease in the rate parameter (a - b) with temperature for both solid and gouge samples; friction transitions from velocity strengthening to velocity weakening at temperature of about 150 degrees C for both solid and gouge samples. We do not observe transition to velocity-strengthening friction at the high end of the tested temperature range. Our results suggest that the occurrence of slow slip events and the downdip limit of the seismogenic zone on subduction megathrusts cannot be solely explained by the temperature dependence of frictional properties of gabbro. Further experimental studies are needed to evaluate the effects of water fugacity and compositional heterogeneity (e. g., the presence of phyllosilicates) on frictional stability of subduction megathrusts.