Publications

Export 7 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K [L] M N O P Q R S T U V W X Y Z   [Show ALL]
L
LaBonte, AL, Brown KM, Fialko Y.  2009.  Hydrologic detection and finite element modeling of a slow slip event in the Costa Rica prism toe. Journal of Geophysical Research-Solid Earth. 114   10.1029/2008jb005806   AbstractWebsite

We investigate transient fluid flux through the seafloor recorded near the Costa Rica trench during the 2000 Costa Rica Seismogenic Zone Experiment using a 2-D fully coupled poroelastic finite element model. We demonstrate that the observed hydrologic anomalies are consistent with a model of propagating slow slip at the subduction interface between the frontal prism and downgoing plate. There are two sources of volumetric strain that drive fluid flux at the seafloor in response to fault slip at depth: (1) compression and dilation in the vicinity of the tips of a slipping patch and (2) extension and compression due to flexure of the seafloor. The superposition of these two effects results in distinctive spatial and temporal patterns of fluid flow through the seafloor. In a forward modeling approach, time series from shear ruptures with a range of fault length-to-depth ratios in a heterogeneous crust are generated and compared with flow rate observations. Assuming a constant propagation rate and an elliptical profile for the distribution of slip along the decollement, the set of model predictions enables us to infer the probable rupture location, extent, propagation velocity, and duration from a single flow rate time series. The best fit model suggests that the slow slip event initiated within the toe at a depth of less than 4 km and propagated bilaterally at an average rate of 0.5 km d(-1). This interpretation implies that stress in the shallow subduction zone is relieved episodically. Furthermore, the Costa Rica data suggest that episodic slow slip events may initiate in the prism toe without being triggered by a seismic event further downdip.

Lau, N, Tymofyeyeva E, Fialko Y.  2018.  Variations in the long-term uplift rate due to the Altiplano-Puna magma body observed with Sentinel-1 interferometry. Earth and Planetary Science Letters. 491:43-47.   10.1016/j.epsl.2018.03.026   AbstractWebsite

We present new Interferometric Synthetic Aperture Radar (InSAR) observations of surface deformation in the Altiplano-Puna region (South America) where previous studies documented a broad uplift at an average rate of similar to 10 mm/yr. We use data from the Sentinel-1 satellite mission to produce high-resolution velocity maps and time series of surface displacements between years 2014-2017. The data reveal that the uplift has slowed down substantially compared to the 1992-2010 epoch and is characterized by short-term fluctuations on time scales of months to years. The observed variations in uplift rate may indicate a non-steady supply of melt and/or volatiles from the partially molten Altiplano-Puna Magma Body (APMB) into an incipient diapir forming in the roof of the APMB. (C) 2018 Elsevier B.V. All rights reserved.

Lin, GQ, Shearer P, Fialko Y.  2006.  Obtaining absolute locations for quarry seismicity using remote sensing data. Bulletin of the Seismological Society of America. 96:722-728.   10.1785/0120050146   AbstractWebsite

We obtain absolute locations for 19 clusters of mining-induced seismicity in southern California by identifying quarries using remote sensing data, including optical imagery and differential digital elevation models. These seismicity clusters contain 16,574 events from the Southern California Seismic Network from 1984 to 2002, which are flagged as quarry blasts but without any -round-truth location constraints. Using georeferenced airphotos and satellite radar topography data, we identify the likely sources of these events as quarries that are clearly visible within 1 to 2 km of the seismically determined locations. We then shift the clusters to align with the airphoto images, obtaining an estimated absolute location accuracy of similar to 200 m for the cluster centroids. The improved locations of these explosions should be helpful for constraining regional 3D velocity models.

Lindsey, E, Sahakian V, Fialko Y, Bock Y, Barbot S, Rockwell T.  2013.  Interseismic strain localization in the San Jacinto Fault Zone. Pure and Applied Geophysics. :1-18.: Springer Basel   10.1007/s00024-013-0753-z   AbstractWebsite

We investigate interseismic deformation across the San Jacinto fault at Anza, California where previous geodetic observations have indicated an anomalously high shear strain rate. We present an updated set of secular velocities from GPS and InSAR observations that reveal a 2–3 km wide shear zone deforming at a rate that exceeds the background strain rate by more than a factor of two. GPS occupations of an alignment array installed in 1990 across the fault trace at Anza allow us to rule out shallow creep as a possible contributor to the observed strain rate. Using a dislocation model in a heterogeneous elastic half space, we show that a reduction in shear modulus within the fault zone by a factor of 1.2–1.6 as imaged tomographically by Allam and Ben-Zion (Geophys J Int 190:1181–1196, 2012) can explain about 50 % of the observed anomalous strain rate. However, the best-fitting locking depth in this case (10.4 ± 1.3 km) is significantly less than the local depth extent of seismicity (14–18 km). We show that a deep fault zone with a shear modulus reduction of at least a factor of 2.4 would be required to explain fully the geodetic strain rate, assuming the locking depth is 15 km. Two alternative possibilities include fault creep at a substantial fraction of the long-term slip rate within the region of deep microseismicity, or a reduced yield strength within the upper fault zone leading to distributed plastic failure during the interseismic period.

Lindsey, EO, Fialko Y, Bock Y, Sandwell DT, Bilham R.  2014.  Localized and distributed creep along the southern San Andreas Fault. Journal of Geophysical Research-Solid Earth. 119:7909-7922.   10.1002/2014jb011275   AbstractWebsite

We investigate the spatial pattern of surface creep and off-fault deformation along the southern segment of the San Andreas Fault using a combination of multiple interferometric synthetic aperture radar viewing geometries and survey-mode GPS occupations of a dense array crossing the fault. Radar observations from Envisat during the period 2003-2010 were used to separate the pattern of horizontal and vertical motion, providing a high-resolution image of uplift and shallow creep along the fault trace. The data reveal pervasive shallow creep along the southernmost 50 km of the fault. Creep is localized on a well-defined fault trace only in the Mecca Hills and Durmid Hill areas, while elsewhere creep appears to be distributed over a 1-2 km wide zone surrounding the fault. The degree of strain localization is correlated with variations in the local fault strike. Using a two-dimensional boundary element model, we show that stresses resulting from slip on a curved fault can promote or inhibit inelastic failure within the fault zone in a pattern matching the observations. The occurrence of shallow, localized interseismic fault creep within mature fault zones may thus be partly controlled by the local fault geometry and normal stress, with implications for models of fault zone evolution, shallow coseismic slip deficit, and geologic estimates of long-term slip rates. Key PointsShallow creep is pervasive along the southernmost 50 km of the San Andreas FaultCreep is localized only along transpressional fault segmentsIn transtensional areas, creep is distributed over a 1-2 km wide fault zone

Lindsey, EO, Fialko Y.  2016.  Geodetic constraints on frictional properties and earthquake hazard in the Imperial Valley, Southern California. Journal of Geophysical Research-Solid Earth. 121:1097-1113.   10.1002/2015jb012516   AbstractWebsite

We analyze a suite of geodetic observations across the Imperial Fault in southern California that span all parts of the earthquake cycle. Coseismic and postseismic surface slips due to the 1979 M 6.6 Imperial Valley earthquake were recorded with trilateration and alignment surveys by Harsh (1982) and Crook et al. (1982), and interseismic deformation is measured using a combination of multiple interferometric synthetic aperture radar (InSAR)-viewing geometries and continuous and survey-mode GPS. In particular, we combine more than 100 survey-mode GPS velocities with InSAR data from Envisat descending tracks 84 and 356 and ascending tracks 77 and 306 (149 total acquisitions), processed using a persistent scatterers method. The result is a dense map of interseismic velocities across the Imperial Fault and surrounding areas that allows us to evaluate the rate of interseismic loading and along-strike variations in surface creep. We compare available geodetic data to models of the earthquake cycle with rate- and state-dependent friction and find that a complete record of the earthquake cycle is required to constrain key fault properties including the rate-dependence parameter (a - b) as a function of depth, the extent of shallow creep, and the recurrence interval of large events. We find that the data are inconsistent with a high (>30mm/yr) slip rate on the Imperial Fault and investigate the possibility that an extension of the San Jacinto-Superstition Hills Fault system through the town of El Centro may accommodate a significant portion of the slip previously attributed to the Imperial Fault. Models including this additional fault are in better agreement with the available observations, suggesting that the long-term slip rate of the Imperial Fault is lower than previously suggested and that there may be a significant unmapped hazard in the western Imperial Valley.

Lindsey, EO, Fialko Y.  2013.  Geodetic slip rates in the southern San Andreas Fault system: Effects of elastic heterogeneity and fault geometry. Journal of Geophysical Research-Solid Earth. 118:689-697.   10.1029/2012jb009358   AbstractWebsite

We use high resolution interferometric synthetic aperture radar and GPS measurements of crustal motion across the southern San Andreas Fault system to investigate the effects of elastic heterogeneity and fault geometry on inferred slip rates and locking depths. Geodetically measured strain rates are asymmetric with respect to the mapped traces of both the southern San Andreas and San Jacinto faults. Two possibilities have been proposed to explain this observation: large contrasts in crustal rigidity across the faults, or an alternate fault geometry such as a dipping San Andreas fault or a blind segment of the San Jacinto Fault. We evaluate these possibilities using a two-dimensional elastic model accounting for heterogeneous structure computed from the Southern California Earthquake Center crustal velocity model CVM-H 6.3. The results demonstrate that moderate variations in elastic properties of the crust do not produce a significant strain rate asymmetry and have only a minor effect on the inferred slip rates. However, we find that small changes in the location of faults at depth can strongly impact the results. Our preferred model includes a San Andreas Fault dipping northeast at 60 degrees, and two active branches of the San Jacinto fault zone. In this case, we infer nearly equal slip rates of 18 +/- 1 and 19 +/- 2 mm/yr for the San Andreas and San Jacinto fault zones, respectively. These values are in good agreement with geologic measurements representing average slip rates over the last 10(4)-10(6) years, implying steady long-term motion on these faults. Citation: Lindsey, E. O., and Y. Fialko (2013), Geodetic slip rates in the southern San Andreas Fault system: Effects of elastic heterogeneity and fault geometry, J. Geophys. Res. Solid Earth, 118, 689-697, doi:10.1029/2012JB009358.