Publications

Export 3 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F [G] H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
G
Guterman, VG, Fialko YA, Khazan YM.  1996.  Dome structures above sill-like crustal intrusions: A quantitative model fo preseismic uplift. Part I. Geofizicheskii Zhurnal. 18:35-43.
Guterman, VG, Fialko YA, Khazan YM.  1996.  Dome structures above sill-like crustal intrusions: A quantitative model fo preseismic uplift. Part 2. Geofizicheskii Zhurnal. 18:62-69.
Gonzalez-Ortega, A, Fialko Y, Sandwell D, Nava-Pichardo FA, Fletcher J, Gonzalez-Garcia J, Lipovsky B, Floyd M, Funning G.  2014.  El Mayor-Cucapah ( M-w 7.2) earthquake: Early near-field postseismic deformation from InSAR and GPS observations. Journal of Geophysical Research-Solid Earth. 119:1482-1497.   10.1002/2013jb010193   AbstractWebsite

El Mayor-Cucapah earthquake occurred on 4 April 2010 in northeastern Baja California just south of the U.S.-Mexico border. The earthquake ruptured several previously mapped faults, as well as some unidentified ones, including the Pescadores, Borrego, Paso Inferior and Paso Superior faults in the Sierra Cucapah, and the Indiviso fault in the Mexicali Valley and Colorado River Delta. We conducted several Global Positioning System (GPS) campaign surveys of preexisting and newly established benchmarks within 30km of the earthquake rupture. Most of the benchmarks were occupied within days after the earthquake, allowing us to capture the very early postseismic transient motions. The GPS data show postseismic displacements in the same direction as the coseismic displacements; time series indicate a gradual decay in postseismic velocities with characteristic time scales of 669days and 203days, assuming exponential and logarithmic decay, respectively. We also analyzed interferometric synthetic aperture radar (InSAR) data from the Envisat and ALOS satellites. The main deformation features seen in the line-of-sight displacement maps indicate subsidence concentrated in the southern and northern parts of the main rupture, in particular at the Indiviso fault, at the Laguna Salada basin, and at the Paso Superior fault. We show that the near-field GPS and InSAR observations over a time period of 5months after the earthquake can be explained by a combination of afterslip, fault zone contraction, and a possible minor contribution of poroelastic rebound. Far-field data require an additional mechanism, most likely viscoelastic relaxation in the ductile substrate.