Export 5 results:
Sort by: Author Title Type [ Year  (Desc)]
Watanabe, S, Bock Y, Melgar D, Tadokoro K.  2018.  Tsunami scenarios based on interseismic models along the Nankai Trough, Japan, from seafloor and onshore geodesy. Journal of Geophysical Research-Solid Earth. 123:2448-2461.   10.1002/2017jb014799   AbstractWebsite

The recent availability of Global Positioning System-Acoustic seafloor geodetic observations enables us to resolve the spatial distribution of the slip deficit rate near the Nankai trough, southwestern Japan. Considering a tectonic block model and the transient deformation due to the major earthquakes in this area, the slip deficit rate between the two relevant blocks can be estimated. In this study, we remove the time-dependent postseismic deformation of the 2004 southeastern off the Kii Peninsula earthquakes (M-JMA 7.1, 7.4), which had led to the underestimation of the slip deficit rate in earlier studies. We model the postearthquake viscoelastic relaxation using the 3D finite element model with bi-viscous Burgers rheology, as well as the afterslip on the finite faults. The corrected Global Positioning System-Acoustic and land-based Global Navigation Satellite Systems data are aligned to the existing tectonic model and used to estimate the slip deficit rate on the plate boundary. We then calculate the coseismic displacements and tsunami wave propagation with the simple assumption that a hundred years of constant slip deficit accumulation was released instantaneously. To evaluate the influence of uncertainties in the plate interface geometry on a tsunami model for the Nankai trough, we investigated two different geometries and performed checkerboard inversion simulations. Although the two models indicate roughly similar results, the peak height of the tsunami wave and its arrival time at several points are significantly different in terms of the expected hazard.

Saunders, JK, Goldberg DE, Haase JS, Bock Y, Offield DG, Melgar D, Restrepo J, Fleischman RB, Nema A, Geng JH, Walls C, Mann D, Mattioli GS.  2016.  Seismogeodesy using GPS and low-cost MEMS accelerometers: Perspectives for earthquake early warning and rapid response. Bulletin of the Seismological Society of America. 106:2469-2489.   10.1785/0120160062   AbstractWebsite

The seismogeodetic method computes accurate displacement and velocity waveforms by optimally extracting high-frequency information from strong-motion accelerometers and low-frequency information from collocated Global Positioning System (GPS) instruments. These broadband observations retain the permanent (static) displacement, are immune to clipping and magnitude saturation for large earthquakes, and are sensitive enough to record P-wave arrivals. These characteristics make seismogeodesy suitable for real-time applications such as earthquake early warning. The Scripps Institution of Oceanography (SIO) has developed an inexpensive microelectromechanical systems (MEMS) accelerometer package to upgrade established GPS stations. We compare the performance of our MEMS accelerometer with an observatory-grade accelerometer using an experiment at the University of California San Diego Large High-Performance Outdoor Shake Table. We show that the two types of accelerometers agree in frequency ranges of seismological and engineering interest and produce equivalent seismogeodetic estimates of displacement and velocity. To date, 27 SIO MEMS packages have been installed at GPS monitoring stations in southern California and the San Francisco Bay area and have recorded four earthquakes (M4.2, M4.1, and two of M4.0). The P-wave arrivals are distinguishable in the seismogeodetic observations at distances of up to similar to 25 km away but not in the GPS-only displacements. There is no significant permanent deformation for these small events. This study demonstrates the lower limit of detectability and that seismogeodetic waveforms can also be a reliable early confirmation that an event is not large or hazardous. It also raises the possibility of rapid magnitude estimation through scaling relationships.

Bock, Y, Melgar D.  2016.  Physical applications of GPS geodesy: a review. Reports on Progress in Physics. 79   10.1088/0034-4885/79/10/106801   AbstractWebsite

Geodesy, the oldest science, has become an important discipline in the geosciences, in large part by enhancing Global Positioning System (GPS) capabilities over the last 35 years well beyond the satellite constellation's original design. The ability of GPS geodesy to estimate 3D positions with millimeter-level precision with respect to a global terrestrial reference frame has contributed to significant advances in geophysics, seismology, atmospheric science, hydrology, and natural hazard science. Monitoring the changes in the positions or trajectories of GPS instruments on the Earth's land and water surfaces, in the atmosphere, or in space, is important for both theory and applications, from an improved understanding of tectonic and magmatic processes to developing systems for mitigating the impact of natural hazards on society and the environment. Besides accurate positioning, all disturbances in the propagation of the transmitted GPS radio signals from satellite to receiver are mined for information, from troposphere and ionosphere delays for weather, climate, and natural hazard applications, to disturbances in the signals due to multipath reflections from the solid ground, water, and ice for environmental applications. We review the relevant concepts of geodetic theory, data analysis, and physical modeling for a myriad of processes at multiple spatial and temporal scales, and discuss the extensive global infrastructure that has been built to support GPS geodesy consisting of thousands of continuously operating stations. We also discuss the integration of heterogeneous and complementary data sets from geodesy, seismology, and geology, focusing on crustal deformation applications and early warning systems for natural hazards.

Melgar, D, Allen RM, Riquelme S, Geng JH, Bravo F, Baez JC, Parra H, Barrientos S, Fang P, Bock Y, Bevis M, Caccamise DJ, Vigny C, Moreno M, Smalley R.  2016.  Local tsunami warnings: Perspectives from recent large events. Geophysical Research Letters. 43:1109-1117.   10.1002/2015gl067100   AbstractWebsite

We demonstrate a flexible strategy for local tsunami warning that relies on regional geodetic and seismic stations. Through retrospective analysis of four recent tsunamigenic events in Japan and Chile, we show that rapid earthquake source information, provided by methodologies developed for earthquake early warning, can be used to generate timely estimates of maximum expected tsunami amplitude with enough accuracy for tsunami warning. We validate the technique by comparing to detailed models of earthquake source and tsunami propagation as well as field surveys of tsunami inundation. Our approach does not require deployment of new geodetic and seismic instrumentation in many subduction zones and could be implemented rapidly by national monitoring and warning agencies. We illustrate the potential impact of our method with a detailed comparison to the actual timeline of events during the recent 2015 M(w)8.3 Illapel, Chile, earthquake and tsunami that prompted the evacuation of 1 million people.

Melgar, D, Bock Y.  2015.  Kinematic earthquake source inversion and tsunami runup prediction with regional geophysical data. Journal of Geophysical Research-Solid Earth. 120:3324-3349.   10.1002/2014jb011832   AbstractWebsite

Rapid near-source earthquake source modeling relying only on strong motion data is limited by instrumental offsets and magnitude saturation, adversely affecting subsequent tsunami prediction. Seismogeodetic displacement and velocity waveforms estimated from an optimal combination of high-rate GPS and strong motion data overcome these limitations. Supplementing land-based data with offshore wave measurements by seafloor pressure sensors and GPS-equipped buoys can further improve the image of the earthquake source and prediction of tsunami extent, inundation, and runup. We present a kinematic source model obtained from a retrospective real-time analysis of a heterogeneous data set for the 2011 M(w)9.0 Tohoku-Oki, Japan, earthquake. Our model is consistent with conceptual models of subduction zones, exhibiting depth dependent behavior that is quantified through frequency domain analysis of slip rate functions. The stress drop distribution is found to be significantly more correlated with aftershock locations and mechanism types when off-shore data are included. The kinematic model parameters are then used as initial conditions in a fully nonlinear tsunami propagation analysis. Notably, we include the horizontal advection of steeply sloping bathymetric features. Comparison with post-event on-land survey measurements demonstrates that the tsunami's inundation and runup are predicted with considerable accuracy, only limited in scale by the resolution of available topography and bathymetry. We conclude that it is possible to produce credible and rapid, kinematic source models and tsunami predictions within minutes of earthquake onset time for near-source coastal regions most susceptible to loss of life and damage to critical infrastructure, regardless of earthquake magnitude.