Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
Kim, MC, Machado H, Jang KH, Trzoss L, Jensen PR, Fenical W.  2018.  Integration of genomic data with NMR analysis enables assignment of the full stereostructure of Neaumycin B, a potent inhibitor of glioblastoma from a marine-derived micromonospora. Journal of the American Chemical Society. 140:10775-10784.   10.1021/jacs.8b04848   AbstractWebsite

The microbial metabolites known as the macrolides are some of the most successful natural products used to treat infectious and immune diseases. Describing the structures of these complex metabolites, however, is often extremely difficult due to the presence of multiple stereogenic centers inherent in this class of polyketide-derived metabolites. With the availability of genome sequence data and a better understanding of the molecular genetics of natural product biosynthesis, it is now possible to use bioinformatic approaches in tandem with spectroscopic tools to assign the full stereostructures of these complex metabolites. In our quest to discover and develop new agents for the treatment of cancer, we observed the production of a highly cytotoxic macrolide, neaumycin B, by a marine-derived actinomycete bacterium of the genus Micromonospora. Neaumycin B is a complex polycyclic macrolide possessing 19 asymmetric centers, usually requiring selective degradation, crystallization, derivatization, X-ray diffraction analysis, synthesis, or other time-consuming approaches to assign the complete stereostructure. As an alternative approach, we sequenced the genome of the producing strain and identified the neaumycin gene cluster (neu). By integrating the known stereospecificities of biosynthetic enzymes with comprehensive NMR analysis, the full stereostructure of neaumycin B was confidently assigned. This approach exemplifies how mining gene cluster information while integrating NMR-based structure data can achieve rapid, efficient, and accurate stereostructural assignments for complex macrolides.

Williams, PG, Miller ED, Asolkar RN, Jensen PR, Fenical W.  2007.  Arenicolides A-C, 26-membered ring macrolides from the marine actinomycete Salinispora arenicola. Journal of Organic Chemistry. 72:5025-5034.   10.1021/jo061878x   AbstractWebsite

Chemical evaluation of the saline fermentation broth of several strains of the obligate marine actinomycete Salinispora arenicola has led to the identification of three new macrolide polyketides designated arenicolides A-C (1-3). The planar structures, elucidated via spectroscopic and chemical methods, consist of 26-membered polyunsaturated macrolactones containing repeating vicinal hydroxyl methoxyl moieties. The relative and absolute stereochemistries of 1-3 were assigned by a combination of J-based configurational analyses and chemical derivatization.

Oh, DC, Kauffman CA, Jensen PR, Fenical W.  2007.  Induced production of emericellamides A and B from the marine-derived fungus Emericella sp. in competing co-culture. Journal of Natural Products. 70:515-520.   10.1021/np060381f   AbstractWebsite

Induction of the production of emericellamides A and B (1, 2), by the marine-derived fungus Emericella sp., was observed during co-culture with the marine actinomycete Salinispora arenicola. The planar structures of these new cyclic depsipeptides, which incorporate 3-hydroxy-2,4-dimethyldecanoic acid and 3-hydroxy-2,4,6-trimethyldodecanoic acid, were assigned by combined chemical and spectral methods. The absolute configurations of the amino acids, and those of the chiral centers on the side chain, were established by application of the Marfey's method, by J-based configuration analysis, and by application of the modified Mosher method. Emericellamides A and B show modest antibacterial activities against methicillin-resistant Staphylococcus aureus with MIC values of 3.8 and 6.0 mu M, respectively.

Cho, JY, Kwon HC, Williams PG, Kauffman CA, Jensen PR, Fenical W.  2006.  Actinofuranones A and B, polyketides from a marine-derived bacterium related to the genus Streptomyces (Actinomycetales). Journal of Natural Products. 69:425-428.   10.1021/np050402q   AbstractWebsite

Two new polyketides, actinofuranones A (1) and B (2), were isolated from the culture extract of a marine-derived Streptomyces strain designated CNQ766. The structures of 1 and 2 were elucidated by interpretation of NMR and other spectroscopic data and by chemical derivatization. The relative stereochemistries of these new molecules were assigned on the basis of analysis of NOE data and vicinal H-1-H-1 coupling constants, while the absolute configurations of the asymmetric centers were determined using the modified Mosher's method.