Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2012
Praveen, PS, Ahmed T, Kar A, Rehman IH, Ramanathan V.  2012.  Link between local scale BC emissions in the Indo-Gangetic Plains and large scale atmospheric solar absorption. Atmospheric Chemistry and Physics. 12:1173-1187.   10.5194/acp-12-1173-2012   AbstractWebsite

Project Surya has documented indoor and outdoor concentrations of black carbon (BC) from traditional biomass burning cook stoves in a rural village located in the Indo-Gangetic Plains (IGP) region of N. India from November 2009-September 2010. In this paper, we systematically document the link between local scale aerosol properties and column averaged regional aerosol optical properties and atmospheric radiative forcing. We document observations from the first phase of Project Surya and estimate the source dependent (biomass and fossil fuels) aerosol optical properties from local to regional scale. Data were collected using surface based observations of BC, organic carbon (OC), aerosol light absorption, scattering coefficient at the Surya village (SVI_1) located in IGP region and integrated with satellite and AERONET observations at the regional scale (IGP). The daily mean BC concentrations at SVI_1 showed a large increase of BC during the dry season (December to February) with values reaching 35 mu g m(-3). Space based LIDAR data revealed how the biomass smoke was trapped within the first kilometer during the dry season and extended to above 5 km during the pre-monsoon season. As a result, during the dry season, the variance in the daily mean single scattering albedo (SSA), the ratio of scattering to extinction coefficient, and column aerosol optical properties at the local IGP site correlated (with slopes in the range of 0.85 to 1.06 and R-2 > 0.4) well with the "IGP_AERONET" (mean of six AERONET sites). The statistically significant correlation suggested that in-situ observations can be used to derive spatial mean forcing, at least for the dry season. The atmospheric forcing due to BC and OC exceeded 20 Wm(-2) during all months from November to May, supporting the deduction that elimination of cook stove smoke emissions through clean cooking technologies will likely have a major positive impact not only on human health but also on regional climate.

2009
Ramanathan, V, Feng Y.  2009.  Air pollution, greenhouse gases and climate change: Global and regional perspectives. Atmospheric Environment. 43:37-50.   10.1016/j.atmosenv.2008.09.063   AbstractWebsite

Greenhouse gases (GHGs) warm the Surface and the atmosphere with significant implications for rainfall, retreat of glaciers and sea ice, sea level, among other factors. About 30 years ago, it was recognized that the increase in tropospheric ozone from air pollution (NO(x), CO and others) is an important greenhouse forcing term. In addition, the recognition of chlorofluorocarbons (CFCs) on stratospheric ozone and its climate effects linked chemistry and climate strongly. What is less recognized, however, is a comparably major global problem dealing with air pollution. Until about ten years ago, air pollution was thought to be just an urban or a local problem. But new data have revealed that air pollution is transported across continents and ocean basins due to fast long-range transport, resulting in trans-oceanic and trans-continental plumes of atmospheric brown Clouds (ABCs) containing sub micron size particles, i.e., aerosols. ABCs intercept Sunlight by absorbing as well as reflecting it, both of which lead to a large surface dimming. The dimming effect is enhanced further because aerosols may nucleate more cloud droplets, which makes the clouds reflect More solar radiation. The dimming has a Surface cooling effect and decreases evaporation of moisture from the surface, thus slows down the hydrological cycle. On the other hand, absorption of solar radiation by black carbon and some organics increase atmospheric hearing and tend to amplify greenhouse warming of the atmosphere. ABCs are concentrated in regional and mega-city hot spots. Long-range transport from these hot spots causes widespread plumes over the adjacent oceans. Such a pattern Of regionally concentrated Surface dimming and atmospheric Solar heating, accompanied by widespread dimming over the oceans, gives rise to large regional effects. Only during the last decade, we have begun to comprehend the surprisingly large regional impacts. In S. Asia and N. Africa, the large north-south gradient in the ABC dimming has altered both the north-south gradients in sea Surface temperatures and land-ocean contrast in surface temperatures, which in turn slow down the monsoon circulation and decrease rainfall over the continents. On the other hand, heating by black carbon warms the atmosphere at elevated levels from 2 to 6 kin, where most tropical glaciers are located, thus strengthening the effect of GHGs on retreat of snow packs and glaciers in the Hindu Kush-Himalaya-Tibetan glaciers. Globally, the surface cooling effect of ABCs may have masked as Much 47% of the global warming by greenhouse gases, with an uncertainty range of 20-80%. This presents a dilemma since efforts to curb air pollution may unmask the ABC cooling effect and enhance the surface warming. Thus efforts to reduce GHGs and air pollution should be done under one common framework. The uncertainties in our understanding of the ABC effects are large, but we are discovering new ways in which human activities are changing the climate and the environment. (C) 2008 Elsevier Ltd. All rights reserved.