Publications

Export 4 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S [T] U V W X Y Z   [Show ALL]
T
Martz, TR, Daly KL, Byrne RH, Stillman JH, Turk D.  2015.  Technology for ocean acidification research: Needs and availability. Oceanography. 28:40-47.   10.5670/oceanog.2015.30   AbstractWebsite

Diverse instruments, both custom built and commercially available, have been used to measure the properties of the aqueous CO2 system in seawater at differing levels of autonomy (automated benchtop, continuous underway, autonomous in situ). In this I review, we compare the capabilities of commercially available instruments with the needs of oceanographers in order to highlight major shortfalls in the state-of-the art instrumentation broadly available to the ocean acidification (OA) scientific community. In addition, we describe community surveys that identify needs for continued development and refinement of sensor and instrument technologies, expansion of programs that provide Certified Reference Materials, development of best practices documentation for autonomous sensors, and continued and expanded sensor intercomparison experiments.

Martz, TR, Connery JG, Johnson KS.  2010.  Testing the Honeywell Durafet (R) for seawater pH applications. Limnology and Oceanography-Methods. 8:172-184.   10.4319/lom.2010.8.172   AbstractWebsite

We report on the first seawater tests at 1 atm of the Honeywell Durafet (R) pH sensor, a commercially available ion sensitive field effect transistor (ISFET). Performance of this sensor was evaluated in a number of different situations including a temperature-controlled calibration vessel, the MBARI test tank, shipboard underway mapping, and a surface mooring. Many of these tests included a secondary reference electrode in addition to the internal reference supplied with the stock Durafet sensor. We present a theoretical overview of sensor response using both types of reference electrode. The Durafet sensor operates with a short term precision of +/- 0.0005 pH over periods of several hours and exhibits stability of better than 0.005 pH over periods of weeks to months. Our tests indicate that the Durafet pH sensor operates at a level of performance satisfactory for many types of biogeochemical studies at low pressure.

Martz, T, Takeshita Y, Rolph R, Bresnahan P.  2012.  Tracer Monitored Titrations: Measurement of Dissolved Oxygen. Analytical Chemistry. 84:290-296.   10.1021/ac202537f   AbstractWebsite

The tracer monitored titration (TMT) technique is evaluated for measurement of dissolved oxygen. The TMT developed in this work uses a simple apparatus consisting of a low-precision pump for titrant delivery and an optical detector based on a white LED and two photodiodes with interference filters. It is shown that the classic Winkler method can be made free of routine volumetric and gravimetric measurements by application of TMT theory, which allows tracking the amounts of titrant and sample using a chemical tracer. The measurement precision of the prototype setup was 0.3% RSD.

Martz, TR, Dickson AG, DeGrandpre MD.  2006.  Tracer monitored titrations: measurement of total alkalinity. Analytical Chemistry. 78:1817-1826.   10.1021/ac0516133   AbstractWebsite

We introduce a new titration methodology, tracer monitored titration (1741), in which analyses are free of volumetric and gravimetric measurements and insensitive to pump precision and reproducibility. Spectrophotometric monitoring of titrant dilution, rather than volume increment, lays the burden of analytical performance solely on the spectrophotometer. In the method described here, the titrant is a standardized mixture of acid-base indicator and strong acid. Dilution of a pulse of titrant in a titration vessel is tracked using the total indicator concentration measured spectrophotometrically. The concentrations of reacted and unreacted indicator species, derived from Beer's law, are used to calculate the relative proportions of titrant and sample in addition to the equilibrium position (pH) of the titration mixture. Because the method does not require volumetric or gravimetric additions of titrant, simple low-precision pumps can be used. Here, we demonstrate application of TMT for analysis of total alkalinity (AT). High-precision, high-accuracy seawater AT measurements are crucial for understanding, for example, the marine CaCO3 budget and saturation state, anthropogenic CO2 penetration into the oceans, calcareous phytoplankton blooms, and coral reef dynamics. We present data from 286 titrations on three types of total alkalinity standards: Na2CO3 in 0.7 mol kg(.)soln(-1) NaCl, NaOH in 0.7 mol kg(.)soln(-1) NaCl, and a seawater Certified Reference Material (CRM). Based on Na2CO3 standards, the accuracy and precision are +/- 0.2 and +/- 0.1% (4 and 2 mu mol kg-soln(-1) for A(T) similar to 2100-2500 mu mol kg(.)soln(-1), n = 242), using low-precision solenoid pumps to introduce sample and titrant. Similar accuracy and precision were found for analyses run 42 days after the initial experiments. Excellent performance is achieved by optimizing the spectrophotometric detection system and relying upon basic chemical thermodynamics for calculating the equivalence point. Although applied to acid-base titrations in this paper, the approach should be generally applicable to other types of titrations.