Publications

Export 4 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
T
Takeshita, Y, Martz TR, Coletti LJ, Dickson AG, Jannasch HW, Johnson KS.  2017.  The effects of pressure on pH of Tris buffer in synthetic seawater. Marine Chemistry. 188:1-5.   10.1016/j.marchem.2016.11.002   AbstractWebsite

Equimolar Tris (2-amino-2-hydroxymethyl-propane-1,3-diol) buffer prepared in artificial seawater media is a widely accepted pH standard for oceanographic pH measurements, though its change in pH over pressure is largely unknown. The change in volume (Delta V) of dissociation reactions can be used to estimate the effects of pressure on the dissociation constant of weak acid and bases. The Delta V of Tris in seawater media of salinity 35 (Delta V-Tris*) was determined between 10 and 30 degrees C using potentiometry. The potentiometric cell consisted of a modified high pressure tolerant Ion Sensitive Field Effect Transistor pH sensor and a Chloride-Ion Selective Electrode directly exposed to solution. The effects of pressure on the potentiometric cell were quantified in aqueous HCl solution prior to measurements in Tris buffer. The experimentally determined Delta V-Tris* were fitted to the equation Delta V-Tris*= 4528 +0.04912t where t is temperature in Celsius; the resultant fit agreed to experimental data within uncertainty of the measurements, which was estimated to be 0.9 cm(-3) mol(-1). Using the results presented here, change in pH of Tris buffer due to pressure can be constrained to better than 0.003 at 200 bar, and can be expressed as: DpH(Tris) = -(4.528 + 0.04912t)p/ln(10)RT. where T is temperature in Kelvin, R is the universal gas constant (83.145 cm(3) bar K-1 mol(-1)), and Pis gauge pressure in bar. On average, pH of Tris buffer changes by approximately -0.02 at 200 bar. (C) 2016 Elsevier B.V. All rights reserved.

Takeshita, Y, Johnson KS, Martz TR, Plant JN, Sarmiento JL.  2018.  Assessment of autonomous pH measurements for determining surface seawater partial pressure of CO2. Journal of Geophysical Research-Oceans. 123:4003-4013.   10.1029/2017jc013387   AbstractWebsite

The Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) program currently operates >80 profiling floats equipped with pH sensors in the Southern Ocean. Theoretically, these floats have the potential to provide unique year-around estimates of pCO(2) derived from pH measurements. Here, we evaluate this approach in the field by comparing pCO(2) estimates from pH sensors to directly measured pCO(2). We first discuss data from a ship's underway system which covered a large range in temperature (2-30 degrees C) and salinity (33.6-36.5) over 43 days. This pH sensor utilizes the same sensing technology but with different packaging than those on SOCCOM floats. The mean residual varied between -4.64.1 and 8.64.0 (1 sigma) atm, depending on how the sensor was calibrated. However, the standard deviation of the residual, interpreted as the ability to track spatiotemporal variability, was consistently <5 atm and was independent of the calibration method. Second, we assessed the temporal stability of this approach by comparing pCO(2) estimated from four floats over 3 years to the Hawaii Ocean Time-series. Good agreement of -2.110.4 (1 sigma) mu atm was observed, with coherent seasonal cycles. These results demonstrate that pCO(2) estimates derived from profiling float pH measurements appear capable of reproducing spatiotemporal variations in surface pCO(2) measurements and should provide a powerful observational tool to complement current efforts to understand the seasonal to interannual variability of surface pCO(2) in underobserved regions of the open ocean.

Takeshita, Y, Frieder CA, Martz TR, Ballard JR, Feely RA, Kram S, Nam S, Navarro MO, Price NN, Smith JE.  2015.  Including high-frequency variability in coastal ocean acidification projections. Biogeosciences. 12:5853-5870.   10.5194/bg-12-5853-2015   AbstractWebsite

Assessing the impacts of anthropogenic ocean acidification requires knowledge of present-day and future environmental conditions. Here, we present a simple model for upwelling margins that projects anthropogenic acidification trajectories by combining high-temporal-resolution sensor data, hydrographic surveys for source water characterization, empirical relationships of the CO2 system, and the atmospheric CO2 record. This model characterizes CO2 variability on timescales ranging from hours (e. g., tidal) to months (e. g., seasonal), bridging a critical knowledge gap in ocean acidification research. The amount of anthropogenic carbon in a given water mass is dependent on the age; therefore a density-age relationship was derived for the study region and then combined with the 2013 Intergovernmental Panel on Climate Change CO2 emission scenarios to add density-dependent anthropogenic carbon to the sensor time series. The model was applied to time series from autonomous pH sensors deployed in the surf zone, kelp forest, submarine canyon edge, and shelf break in the upper 100m of the Southern California Bight. All habitats were within 5 km of one another, and exhibited unique, habitat-specific CO2 variability signatures and acidification trajectories, demonstrating the importance of making projections in the context of habitat-specific CO2 signatures. In general, both the mean and range of pCO(2) increase in the future, with the greatest increase in both magnitude and range occurring in the deeper habitats due to reduced buffering capacity. On the other hand, the saturation state of aragonite (Omega(Ar)) decreased in both magnitude and range. This approach can be applied to the entire California Current System, and upwelling margins in general, where sensor and complementary hydrographic data are available.

N
Nam, S, Takeshita Y, Frieder CA, Martz T, Ballard J.  2015.  Seasonal advection of Pacific Equatorial Water alters oxygen and pH in the Southern California Bight. Journal of Geophysical Research-Oceans. 120:5387-5399.   10.1002/2015jc010859   AbstractWebsite

Chemical properties of the California Undercurrent (CU) have been changing over the past several decades, yet the mechanisms responsible for the trend are still not fully understood. We present a survey of temperature, salinity, O-2, pH, and currents at intermediate depths (defined here as 50-500 m) in the summer (30 June to 10 July) and winter (8-15 December) of 2012 in the southern region of the Southern California Bight. Observations of temperature, salinity, and currents reveal that local bathymetry and small gyres play an important role in the flow path of the California Undercurrent (CU). Using spiciness (p) as a tracer, we observe a 10% increase of Pacific Equatorial Water (PEW) in the core of the CU during the summer versus the winter. This is associated with an increase in p of 0.2, and a decrease in O-2 and pH of 30 mu mol kg(-1) and 0.022, respectively; the change in pH is driven by increased CO2, while total alkalinity remains unchanged. The high-p, low-O-2, and low-pH waters during the summer are not distributed uniformly in the study region. Moreover, mooring observations at the edge of the continental shelf reveal intermittent intrusions of PEW onto the shelf with concomitant decreases in O-2 and pH. We estimate that increased advection of PEW in the CU could account for approximately 50% of the observed decrease in O-2, and between 49 and 73% of the decrease in pH, over the past three decades.