Publications

Export 2 results:
Sort by: Author Title [ Type  (Asc)] Year
Journal Article
Takeshita, Y, Frieder CA, Martz TR, Ballard JR, Feely RA, Kram S, Nam S, Navarro MO, Price NN, Smith JE.  2015.  Including high-frequency variability in coastal ocean acidification projections. Biogeosciences. 12:5853-5870.   10.5194/bg-12-5853-2015   AbstractWebsite

Assessing the impacts of anthropogenic ocean acidification requires knowledge of present-day and future environmental conditions. Here, we present a simple model for upwelling margins that projects anthropogenic acidification trajectories by combining high-temporal-resolution sensor data, hydrographic surveys for source water characterization, empirical relationships of the CO2 system, and the atmospheric CO2 record. This model characterizes CO2 variability on timescales ranging from hours (e. g., tidal) to months (e. g., seasonal), bridging a critical knowledge gap in ocean acidification research. The amount of anthropogenic carbon in a given water mass is dependent on the age; therefore a density-age relationship was derived for the study region and then combined with the 2013 Intergovernmental Panel on Climate Change CO2 emission scenarios to add density-dependent anthropogenic carbon to the sensor time series. The model was applied to time series from autonomous pH sensors deployed in the surf zone, kelp forest, submarine canyon edge, and shelf break in the upper 100m of the Southern California Bight. All habitats were within 5 km of one another, and exhibited unique, habitat-specific CO2 variability signatures and acidification trajectories, demonstrating the importance of making projections in the context of habitat-specific CO2 signatures. In general, both the mean and range of pCO(2) increase in the future, with the greatest increase in both magnitude and range occurring in the deeper habitats due to reduced buffering capacity. On the other hand, the saturation state of aragonite (Omega(Ar)) decreased in both magnitude and range. This approach can be applied to the entire California Current System, and upwelling margins in general, where sensor and complementary hydrographic data are available.

Nam, S, Takeshita Y, Frieder CA, Martz T, Ballard J.  2015.  Seasonal advection of Pacific Equatorial Water alters oxygen and pH in the Southern California Bight. Journal of Geophysical Research-Oceans. 120:5387-5399.   10.1002/2015jc010859   AbstractWebsite

Chemical properties of the California Undercurrent (CU) have been changing over the past several decades, yet the mechanisms responsible for the trend are still not fully understood. We present a survey of temperature, salinity, O-2, pH, and currents at intermediate depths (defined here as 50-500 m) in the summer (30 June to 10 July) and winter (8-15 December) of 2012 in the southern region of the Southern California Bight. Observations of temperature, salinity, and currents reveal that local bathymetry and small gyres play an important role in the flow path of the California Undercurrent (CU). Using spiciness (p) as a tracer, we observe a 10% increase of Pacific Equatorial Water (PEW) in the core of the CU during the summer versus the winter. This is associated with an increase in p of 0.2, and a decrease in O-2 and pH of 30 mu mol kg(-1) and 0.022, respectively; the change in pH is driven by increased CO2, while total alkalinity remains unchanged. The high-p, low-O-2, and low-pH waters during the summer are not distributed uniformly in the study region. Moreover, mooring observations at the edge of the continental shelf reveal intermittent intrusions of PEW onto the shelf with concomitant decreases in O-2 and pH. We estimate that increased advection of PEW in the CU could account for approximately 50% of the observed decrease in O-2, and between 49 and 73% of the decrease in pH, over the past three decades.