Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
Takeshita, Y, Cyronak T, Martz TR, Kindeberg T, Andersson AJ.  2018.  Coral reef carbonate chemistry variability at different functional scales. Frontiers in Marine Science. 5   10.3389/fmars.2018.00175   AbstractWebsite

There is a growing recognition for the need to understand how seawater carbonate chemistry over coral reef environments will change in a high-CO2 world to better assess the impacts of ocean acidification on these valuable ecosystems. Coral reefs modify overlying water column chemistry through biogeochemical processes such as net community organic carbon production (NCR) and calcification (NCC). However, the relative importance and influence of these processes on seawater carbonate chemistry vary across multiple functional scales (defined here as space, time, and benthic community composition), and have not been fully constrained. Here, we use Bermuda as a case study to assess (1) spatiotemporal variability in physical and chemical parameters along a depth gradient at a rim reef location, (2) the spatial variability of total alkalinity (TA) and dissolved inorganic carbon (DIC) over distinct benthic habitats to infer NCC:NCP ratios [< several km(2); rim reef vs. seagrass and calcium carbonate (CaCO3) sediments] on diel timescales, and (3) compare how TA-DIC relationships and NCC:NCP vary as we expand functional scales from local habitats to the entire reef platform (10's of km(2)) on seasonal to interannual timescales. Our results demonstrate that TA-DIC relationships were strongly driven by local benthic metabolism and community composition over diel cycles. However, as the spatial scale expanded to the reef platform, the TA-DIC relationship reflected processes that were integrated over larger spatiotemporal scales, with effects of NCC becoming increasingly more important over NCR. This study demonstrates the importance of considering drivers across multiple functional scales to constrain carbonate chemistry variability over coral reefs.

Takeshita, Y, Martz TR, Coletti LJ, Dickson AG, Jannasch HW, Johnson KS.  2017.  The effects of pressure on pH of Tris buffer in synthetic seawater. Marine Chemistry. 188:1-5.   10.1016/j.marchem.2016.11.002   AbstractWebsite

Equimolar Tris (2-amino-2-hydroxymethyl-propane-1,3-diol) buffer prepared in artificial seawater media is a widely accepted pH standard for oceanographic pH measurements, though its change in pH over pressure is largely unknown. The change in volume (Delta V) of dissociation reactions can be used to estimate the effects of pressure on the dissociation constant of weak acid and bases. The Delta V of Tris in seawater media of salinity 35 (Delta V-Tris*) was determined between 10 and 30 degrees C using potentiometry. The potentiometric cell consisted of a modified high pressure tolerant Ion Sensitive Field Effect Transistor pH sensor and a Chloride-Ion Selective Electrode directly exposed to solution. The effects of pressure on the potentiometric cell were quantified in aqueous HCl solution prior to measurements in Tris buffer. The experimentally determined Delta V-Tris* were fitted to the equation Delta V-Tris*= 4528 +0.04912t where t is temperature in Celsius; the resultant fit agreed to experimental data within uncertainty of the measurements, which was estimated to be 0.9 cm(-3) mol(-1). Using the results presented here, change in pH of Tris buffer due to pressure can be constrained to better than 0.003 at 200 bar, and can be expressed as: DpH(Tris) = -(4.528 + 0.04912t)p/ln(10)RT. where T is temperature in Kelvin, R is the universal gas constant (83.145 cm(3) bar K-1 mol(-1)), and Pis gauge pressure in bar. On average, pH of Tris buffer changes by approximately -0.02 at 200 bar. (C) 2016 Elsevier B.V. All rights reserved.

Gray, SEC, DeGrandpre MD, Moore TS, Martz TR, Friederich GE, Johnson KS.  2011.  Applications of in situ pH measurements for inorganic carbon calculations. Marine Chemistry. 125:82-90.   10.1016/j.marchem.2011.02.005   AbstractWebsite

This study examines the utility of combining pH measurements with other inorganic carbon parameters for autonomous mooring-based carbon cycle research. Determination of the full suite of inorganic carbon species in the oceans has previously been restricted to ship-based studies. Now with the availability of autonomous sensors for pH and the partial pressure of CO(2) (pCO(2)), it is possible to characterize the inorganic carbon system on moorings and other unmanned platforms. The indicator-based pH instrument, SAMI-pH, was deployed with an autonomous equilibrator-infrared pCO(2) system in Monterey Bay. California USA from June to August 2007. The two-month time-series show a high degree of short-term variability, with pH and pCO(2) changing by as much as 0.32 pH units and 240 mu atm, respectively, during upwelling periods. The pH and salinity-derived alkalinity (A(Tsalin)) were used to calculate the other inorganic carbon parameters, including pCO(2), total dissolved inorganic carbon (DIC) and CaCO(3) saturation states. The calculated pCO(2) was within 2 mu atm of the measured pCO(2) during the first day of the deployment and within 8 mu atm over the first month. The DIC calculated from pH-A-Ban and pCO(2)-A(Tsalin) were within 5 mu mol kg(-1) of each other during the first month. However, DIC calculated from pH-pCO(2) differed by similar to 50 mu mol kg(-1) from the other estimates over the same period, reflecting the sensitivity of the pH-pCO(2) calculation to measurement error. The data continued to diverge during the final month and this difference was likely driven by extensive biofouling. Because of the relative insensitivity of CO(3)(2-) concentration to these errors, aragonite saturation calculated from the pH-pCO(2) pair was within 0.15 of the pH-A(Tsalin) values over the entire deployment. These results show that in situ pH, when combined with other CO(2) parameters, can provide valuable insights into both data quality and inorganic carbon cycling. (C) 2011 Elsevier B.V. All rights reserved.

Kroeker, KJ, Micheli F, Gambi MC, Martz TR.  2011.  Divergent ecosystem responses within a benthic marine community to ocean acidification. Proceedings of the National Academy of Sciences of the United States of America. 108:14515-14520.   10.1073/pnas.1107789108   AbstractWebsite

Ocean acidification is predicted to impact all areas of the oceans and affect a diversity of marine organisms. However, the diversity of responses among species prevents clear predictions about the impact of acidification at the ecosystem level. Here, we used shallow water CO(2) vents in the Mediterranean Sea as a model system to examine emergent ecosystem responses to ocean acidification in rocky reef communities. We assessed in situ benthic invertebrate communities in three distinct pH zones (ambient, low, and extreme low), which differed in both the mean and variability of seawater pH along a continuous gradient. We found fewer taxa, reduced taxonomic evenness, and lower biomass in the extreme low pH zones. However, the number of individuals did not differ among pH zones, suggesting that there is density compensation through population blooms of small acidification-tolerant taxa. Furthermore, the trophic structure of the invertebrate community shifted to fewer trophic groups and dominance by generalists in extreme low pH, suggesting that there may be a simplification of food webs with ocean acidification. Despite high variation in individual species' responses, our findings indicate that ocean acidification decreases the diversity, biomass, and trophic complexity of benthic marine communities. These results suggest that a loss of biodiversity and ecosystem function is expected under extreme acidification scenarios.