Publications

Export 13 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I [J] K L M N O P Q R S T U V W X Y Z   [Show ALL]
A
Gray, SEC, DeGrandpre MD, Moore TS, Martz TR, Friederich GE, Johnson KS.  2011.  Applications of in situ pH measurements for inorganic carbon calculations. Marine Chemistry. 125:82-90.   10.1016/j.marchem.2011.02.005   AbstractWebsite

This study examines the utility of combining pH measurements with other inorganic carbon parameters for autonomous mooring-based carbon cycle research. Determination of the full suite of inorganic carbon species in the oceans has previously been restricted to ship-based studies. Now with the availability of autonomous sensors for pH and the partial pressure of CO(2) (pCO(2)), it is possible to characterize the inorganic carbon system on moorings and other unmanned platforms. The indicator-based pH instrument, SAMI-pH, was deployed with an autonomous equilibrator-infrared pCO(2) system in Monterey Bay. California USA from June to August 2007. The two-month time-series show a high degree of short-term variability, with pH and pCO(2) changing by as much as 0.32 pH units and 240 mu atm, respectively, during upwelling periods. The pH and salinity-derived alkalinity (A(Tsalin)) were used to calculate the other inorganic carbon parameters, including pCO(2), total dissolved inorganic carbon (DIC) and CaCO(3) saturation states. The calculated pCO(2) was within 2 mu atm of the measured pCO(2) during the first day of the deployment and within 8 mu atm over the first month. The DIC calculated from pH-A-Ban and pCO(2)-A(Tsalin) were within 5 mu mol kg(-1) of each other during the first month. However, DIC calculated from pH-pCO(2) differed by similar to 50 mu mol kg(-1) from the other estimates over the same period, reflecting the sensitivity of the pH-pCO(2) calculation to measurement error. The data continued to diverge during the final month and this difference was likely driven by extensive biofouling. Because of the relative insensitivity of CO(3)(2-) concentration to these errors, aragonite saturation calculated from the pH-pCO(2) pair was within 0.15 of the pH-A(Tsalin) values over the entire deployment. These results show that in situ pH, when combined with other CO(2) parameters, can provide valuable insights into both data quality and inorganic carbon cycling. (C) 2011 Elsevier B.V. All rights reserved.

Takeshita, Y, Johnson KS, Martz TR, Plant JN, Sarmiento JL.  2018.  Assessment of autonomous pH measurements for determining surface seawater partial pressure of CO2. Journal of Geophysical Research-Oceans. 123:4003-4013.   10.1029/2017jc013387   AbstractWebsite

The Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) program currently operates >80 profiling floats equipped with pH sensors in the Southern Ocean. Theoretically, these floats have the potential to provide unique year-around estimates of pCO(2) derived from pH measurements. Here, we evaluate this approach in the field by comparing pCO(2) estimates from pH sensors to directly measured pCO(2). We first discuss data from a ship's underway system which covered a large range in temperature (2-30 degrees C) and salinity (33.6-36.5) over 43 days. This pH sensor utilizes the same sensing technology but with different packaging than those on SOCCOM floats. The mean residual varied between -4.64.1 and 8.64.0 (1 sigma) atm, depending on how the sensor was calibrated. However, the standard deviation of the residual, interpreted as the ability to track spatiotemporal variability, was consistently <5 atm and was independent of the calibration method. Second, we assessed the temporal stability of this approach by comparing pCO(2) estimated from four floats over 3 years to the Hawaii Ocean Time-series. Good agreement of -2.110.4 (1 sigma) mu atm was observed, with coherent seasonal cycles. These results demonstrate that pCO(2) estimates derived from profiling float pH measurements appear capable of reproducing spatiotemporal variations in surface pCO(2) measurements and should provide a powerful observational tool to complement current efforts to understand the seasonal to interannual variability of surface pCO(2) in underobserved regions of the open ocean.

Gonski, SF, Cai WJ, Ullman WJ, Joesoef A, Main CR, Pettay DT, Martz TR.  2018.  Assessment of the suitability of Durafet-based sensors for pH measurement in dynamic estuarine environments. Estuarine Coastal and Shelf Science. 200:152-168.   10.1016/j.ecss.2017.10.020   AbstractWebsite

The suitability of the Honeywell Durafet to the measurement of pH in productive, high-fouling, and highly-turbid estuarine environments was investigated at the confluence of the Murderkill Estuary and Delaware Bay (Delaware, USA). Three different flow configurations of the SeapHOx sensor equipped with a Honeywell Durafet and its integrated internal (Ag/AgCl reference electrode containing a 4.5 M KCl gel liquid junction) and external (solid-state chloride ion selective electrode, CI-ISE) reference electrodes were deployed for four periods between April 2015 and September 2016. In this environment, the Honeywell Durafet proved capable of making high-resolution and high-frequency pH measurements on the total scale between pH 6.8 and 8.4. Natural pH fluctuations of >1 pH unit were routinely captured over a range of timescales. The sensor pH collected between May and August 2016 using the most refined SeapHOx configuration exhibited good agreement with multiple sets of independently measured reference pH values. When deployed in conjunction with rigorous discrete sampling and calibration schemes, the sensor pH had a root-mean squared error ranging between 0.011 and 0.036 pH units across a wide range of salinity relative to both pH(T) calculated from measured dissolved inorganic carbon and total alkalinity and pH(NBs) measured with a glass electrode corrected to pH(T) at in situ conditions. The present work demonstrates the viability of the Honeywell Durafet to the measurement of pH to within the weather-level precision defined by the Global Ocean Acidification Observing Network (GOA-ON, <= 0.02 pH units) as a part of future estuarine CO2 chemistry studies undertaken in dynamic environments. (C) 2017 Elsevier Ltd. All rights reserved.

B
Bresnahan, PJ, Martz TR, Takeshita Y, Johnson KS, LaShomb M.  2014.  Best practices for autonomous measurement of seawater pH with the Honeywell Durafet. Methods in Oceanography.   10.1016/j.mio.2014.08.003  
C
Takeshita, Y, Martz TR, Johnson KS, Dickson AG.  2014.  Characterization of an Ion Sensitive Field Effect Transistor and Chloride Ion Selective Electrodes for pH Measurements in Seawater. Analytical Chemistry. 86:11189-11195.: American Chemical Society   10.1021/ac502631z   AbstractWebsite
n/a
Takeshita, Y, Martz TR, Johnson KS, Plant JN, Gilbert D, Riser SC, Neill C, Tilbrook B.  2013.  A climatology-based quality control procedure for profiling float oxygen data. Journal of Geophysical Research-Oceans. 118:5640-5650.   10.1002/jgrc.20399   AbstractWebsite

Over 450 Argo profiling floats equipped with oxygen sensors have been deployed, but no quality control (QC) protocols have been adopted by the oceanographic community for use by Argo data centers. As a consequence, the growing float oxygen data set as a whole is not readily utilized for many types of biogeochemical studies. Here we present a simple procedure that can be used to correct first-order errors (offset and drift) in profiling float oxygen data by comparing float data to a monthly climatology (World Ocean Atlas 2009). Float specific correction terms for the entire array were calculated. This QC procedure was evaluated by (1) comparing the climatology-derived correction coefficients to those derived from discrete samples for 14 floats and (2) comparing correction coefficients for seven floats that had been calibrated twice prior to deployment (once in the factory and once in-house), with the second calibration ostensibly more accurate than the first. The corrections presented here constrain most float oxygen measurements to better than 3% at the surface.

D
Johnson, KS, Jannasch HW, Coletti LJ, Elrod VA, Martz TR, Takeshita Y, Carlson RJ, Connery JG.  2016.  Deep-Sea DuraFET: A Pressure Tolerant pH Sensor Designed for Global Sensor Networks. Analytical Chemistry. 88:3249-3256.   10.1021/acs.analchem.5b04653   AbstractWebsite

Increasing atmospheric carbon dioxide is driving a long-term decrease in ocean pH which is superimposed on daily to seasonal variability. These changes impact ecosystem processes, and they serve as a record of ecosystem metabolism. However, the temporal variability in pH is observed at only a few locations in the ocean because a ship is required to support pH observations of sufficient precision and accuracy. This paper describes a pressure tolerant Ion Sensitive Field Effect Transistor pH sensor that is based on the Honeywell Durafet ISFET die. When combined with a AgCl pseudoreference sensor that is immersed directly in seawater, the system is capable of operating for years at a time on platforms that cycle from depths of several km to the surface. The paper also describes the calibration scheme developed to allow calibrated pH measurements to be derived from the activity of HCl reported by the sensor system over the range of ocean pressure and temperature. Deployments on vertical profiling platforms enable self-calibration in deep waters where pH values are stable. Measurements with the sensor indicate that it is capable of reporting pH with an accuracy of 0.01 or better on the total proton scale and a precision over multiyear periods of 0.005. This system enables a global ocean observing system for ocean pH.

Martz, TR, Jannasch HW, Johnson KS.  2009.  Determination of carbonate ion concentration and inner sphere carbonate ion pairs in seawater by ultraviolet spectrophotometric titration. Marine Chemistry. 115:145-154.   10.1016/j.marchem.2009.07.002   AbstractWebsite

We describe a novel method for determination of carbonate ion concentration in seawater by acidimetric titration with UV detection. Because CO(3)(2-) absorbs light at wavelengths of less than similar to 250 nm, it is feasible to titrate most carbonate-containing natural waters with acid and observe an increase in %Transmittance. The observed signal is proportional to the concentration of carbonate ion in the original sample. Present technology permits a theoretical precision in the determination of [CO(3)(2-)] in natural seawater background of similar to 0.5% (at 10 cm pathlength, 200 mu M CO(3)(2-), +/- 0.0001 AU). The procedure has been tested at 1 and 10 cm pathlengths using single and multipoint titration methods, respectively. Results using natural seawater test solutions indicate a resolution in [CO(3)(2-)] of 3.6% in a standard I cm cuvette using a very simple manual method, and 0.7% using a custom-built 10 cm closed titration cell. Estimates of the relative distribution of CO(3)(2-) between inner and outer sphere complexes with Mg(2+) and Na(+) were also determined and the equilibrium constants agree with published values. This method provides a new tool for studies of several fundamental aspects CO(2) chemistry, including the second dissociation constant of carbonic acid, CO(3)(2-) ion pairing, and can be used to directly measure the distribution of carbonate ion in seawater and many other types of natural waters. (C) 2009 Elsevier B.V. All rights reserved.

E
Takeshita, Y, Martz TR, Coletti LJ, Dickson AG, Jannasch HW, Johnson KS.  2017.  The effects of pressure on pH of Tris buffer in synthetic seawater. Marine Chemistry. 188:1-5.   10.1016/j.marchem.2016.11.002   AbstractWebsite

Equimolar Tris (2-amino-2-hydroxymethyl-propane-1,3-diol) buffer prepared in artificial seawater media is a widely accepted pH standard for oceanographic pH measurements, though its change in pH over pressure is largely unknown. The change in volume (Delta V) of dissociation reactions can be used to estimate the effects of pressure on the dissociation constant of weak acid and bases. The Delta V of Tris in seawater media of salinity 35 (Delta V-Tris*) was determined between 10 and 30 degrees C using potentiometry. The potentiometric cell consisted of a modified high pressure tolerant Ion Sensitive Field Effect Transistor pH sensor and a Chloride-Ion Selective Electrode directly exposed to solution. The effects of pressure on the potentiometric cell were quantified in aqueous HCl solution prior to measurements in Tris buffer. The experimentally determined Delta V-Tris* were fitted to the equation Delta V-Tris*= 4528 +0.04912t where t is temperature in Celsius; the resultant fit agreed to experimental data within uncertainty of the measurements, which was estimated to be 0.9 cm(-3) mol(-1). Using the results presented here, change in pH of Tris buffer due to pressure can be constrained to better than 0.003 at 200 bar, and can be expressed as: DpH(Tris) = -(4.528 + 0.04912t)p/ln(10)RT. where T is temperature in Kelvin, R is the universal gas constant (83.145 cm(3) bar K-1 mol(-1)), and Pis gauge pressure in bar. On average, pH of Tris buffer changes by approximately -0.02 at 200 bar. (C) 2016 Elsevier B.V. All rights reserved.

McLaughlin, K, Dickson A, Weisberg SB, Coale K, Elrod V, Hunter C, Johnson KS, Kram S, Kudela R, Martz T, Negrey K, Passow U, Shaughnessy F, Smith JE, Tadesse D, Washburn L, Weis KR.  2017.  An evaluation of ISFET sensors for coastal pH monitoring applications. Regional Studies in Marine Science. 12:11-18.   10.1016/j.rsma.2017.02.008   AbstractWebsite

The accuracy and precision of ion sensitive field effect transistor (ISFET) pH sensors have been well documented, but primarily by ocean chemistry specialists employing the technology at single locations. Here we examine their performance in a network context through comparison to discrete measurements of pH, using different configurations of the Honeywell DuraFET pH sensor deployed in six coastal settings by operators with a range of experience. Experience of the operator had the largest effect on performance. The average difference between discrete and ISFET pH was 0.005 pH units, but ranged from -0.030 to 0.083 among operators, with more experienced operators within +/- 0.02 pH units of the discrete measurement. In addition, experienced operators achieved a narrower range of variance in difference between discrete bottle measurements and ISFET sensor readings compared to novice operators and novice operators had a higher proportion of data failing quality control screening. There were no statistically significant differences in data uncertainty associated with sensor manufacturer or deployment environment (pier-mounted, flowthrough system, and buoy-mounted). The variation we observed among operators highlights the necessity of best practices and training when instruments are to be used in a network where comparison across data streams is desired. However, while opportunities remain for improving the performance of the ISFET sensors when deployed by less experienced operators, the uncertainty associated with their deployment and validation was several-fold less than the observed natural temporal variability in pH, demonstrating the utility of these sensors in tracking local changes in acidification. (C) 2017 Elsevier B.V. All rights reserved.

H
Hofmann, GE, Smith JE, Johnson KS, Send U, Levin LA, Micheli F, Paytan A, Price NN, Peterson B, Takeshita Y, Matson PG, Crook ED, Kroeker KJ, Gambi MC, Rivest EB, Frieder CA, Yu PC, Martz TR.  2011.  High-Frequency Dynamics of Ocean pH: A Multi-Ecosystem Comparison. Plos One. 6   10.1371/journal.pone.0028983   AbstractWebsite

The effect of Ocean Acidification (OA) on marine biota is quasi-predictable at best. While perturbation studies, in the form of incubations under elevated pCO(2), reveal sensitivities and responses of individual species, one missing link in the OA story results from a chronic lack of pH data specific to a given species' natural habitat. Here, we present a compilation of continuous, high-resolution time series of upper ocean pH, collected using autonomous sensors, over a variety of ecosystems ranging from polar to tropical, open-ocean to coastal, kelp forest to coral reef. These observations reveal a continuum of month-long pH variability with standard deviations from 0.004 to 0.277 and ranges spanning 0.024 to 1.430 pH units. The nature of the observed variability was also highly site-dependent, with characteristic diel, semi-diurnal, and stochastic patterns of varying amplitudes. These biome-specific pH signatures disclose current levels of exposure to both high and low dissolved CO2, often demonstrating that resident organisms are already experiencing pH regimes that are not predicted until 2100. Our data provide a first step toward crystallizing the biophysical link between environmental history of pH exposure and physiological resilience of marine organisms to fluctuations in seawater CO2. Knowledge of this spatial and temporal variation in seawater chemistry allows us to improve the design of OA experiments: we can test organisms with a priori expectations of their tolerance guardrails, based on their natural range of exposure. Such hypothesis-testing will provide a deeper understanding of the effects of OA. Both intuitively simple to understand and powerfully informative, these and similar comparative time series can help guide management efforts to identify areas of marine habitat that can serve as refugia to acidification as well as areas that are particularly vulnerable to future ocean change.

O
Martz, TR, Johnson KS, Riser SC.  2008.  Ocean metabolism observed with oxygen sensors on profiling floats in the South Pacific. Limnology and Oceanography. 53:2094-2111.   10.4319/lo.2008.53.5_part_2.2094   AbstractWebsite

We estimated rates of production and export in the South Pacific (80 degrees W to 180 degrees W in a zonal band between 35 degrees S and 50 degrees S) using 1.5 yr of oxygen measurements from profiling floats. Export production, calculated from oxygen utilization rates below the compensation depth from December to April, was 10.7 +/- 2 mmol C m(-2) d(-1) (n = 36, 95% CI). The corresponding satellite net primary production was 46 6 4 mmol C m(-2) d(-1), yielding a regional e-ratio of 0.23 +/- 0.05. Averaging oxygen utilization rates resulted in a net cancellation of most water mass changes related to advection and float migration. The composite vertical profile of remineralization rates, obtained by binning 36 rate profiles, agreed with published measurements based on oxygen utilization rates in hydrographic surveys and fits the classic form of a particulate organic carbon (POC) attenuation function. However, the disagreement between oxygen-based remineralization rates and those obtained by sediment traps suggests fundamental differences between these two methods. Using float data to constrain a one-dimensional mixed-layer model, the annual net community production at 45 degrees S, 144 degrees W was similar to 2.5 mol C m(-2) yr(-1). Spatial trends in export production coinciding with the New Zealand shelf and Subtropical Front are identified.

T
Martz, TR, Connery JG, Johnson KS.  2010.  Testing the Honeywell Durafet (R) for seawater pH applications. Limnology and Oceanography-Methods. 8:172-184.   10.4319/lom.2010.8.172   AbstractWebsite

We report on the first seawater tests at 1 atm of the Honeywell Durafet (R) pH sensor, a commercially available ion sensitive field effect transistor (ISFET). Performance of this sensor was evaluated in a number of different situations including a temperature-controlled calibration vessel, the MBARI test tank, shipboard underway mapping, and a surface mooring. Many of these tests included a secondary reference electrode in addition to the internal reference supplied with the stock Durafet sensor. We present a theoretical overview of sensor response using both types of reference electrode. The Durafet sensor operates with a short term precision of +/- 0.0005 pH over periods of several hours and exhibits stability of better than 0.005 pH over periods of weeks to months. Our tests indicate that the Durafet pH sensor operates at a level of performance satisfactory for many types of biogeochemical studies at low pressure.