Simultaneous quantum yield measurements of carbon uptake and oxygen evolution in microalgal cultures

Citation:
Du, N, Gholami P, Kline DI, Dupont CL, Dickson AG, Mendola D, Martz T, Allen AE, Mitchell BG.  2018.  Simultaneous quantum yield measurements of carbon uptake and oxygen evolution in microalgal cultures. Plos One. 13

Date Published:

2018/06

Keywords:

acclimation, Aquatic Plants, chlamydomonas-reinhardtii, fluorescence, light, photoacclimation, photoinhibition, photosynthetic electron-transport, phytoplankton, sea-water

Abstract:

The photosynthetic quantum yield (F), defined as carbon fixed or oxygen evolved per unit of light absorbed, is a fundamental but rarely determined biophysical parameter. A method to estimate Phi for both net carbon uptake and net oxygen evolution simultaneously can provide important insights into energy and mass fluxes. Here we present details for a novel system that allows quantification of carbon fluxes using pH oscillation and simultaneous oxygen fluxes by integration with a membrane inlet mass spectrometer. The pHOS system was validated using Phaeodactylum tricornutum cultured with continuous illumination of 110 mu mole quanta m(-2) s(-1) at 25 degrees C. Furthermore, simultaneous measurements of carbon and oxygen flux using the pHOS-MIMS and photon flux based on spectral absorption were carried out to explore the kinetics of F in P. tricornutum during its acclimation from low to high light (110 to 750 mu mole quanta m(-2) s(-1)). Comparing results at 0 and 24 hours, we observed strong decreases in cellular chlorophyll a (0.58 to 0.21 pg cell(-1)), Fv/Fm (0.71 to 0.59) and maximum Phi(CO2) (0.019 to 0.004) and Phi(O2) (0.028 to 0.007), confirming the transition toward high light acclimation. The Phi time-series indicated a non-synchronized acclimation response between carbon uptake and oxygen evolution, which has been previously inferred based on transcriptomic changes for a similar experimental design with the same diatom that lacked physiological data. The integrated pHOS-MIMS system can provide simultaneous carbon and oxygen measurements accurately, and at the time-resolution required to resolve highresolution carbon and oxygen physiological dynamics.

Notes:

n/a

Website

DOI:

10.1371/journal.pone.0199125