Determination of carbonate ion concentration and inner sphere carbonate ion pairs in seawater by ultraviolet spectrophotometric titration

Citation:
Martz, TR, Jannasch HW, Johnson KS.  2009.  Determination of carbonate ion concentration and inner sphere carbonate ion pairs in seawater by ultraviolet spectrophotometric titration. Marine Chemistry. 115:145-154.

Date Published:

Aug

Keywords:

bicarbonate, bromide, carbon dioxide, carbonate, carriers, inorganic carbon, iodide, ion, natural-waters, nitrate, ocean, paring, photochemistry, seawater, Sensors, Spectrophotometric, Titration

Abstract:

We describe a novel method for determination of carbonate ion concentration in seawater by acidimetric titration with UV detection. Because CO(3)(2-) absorbs light at wavelengths of less than similar to 250 nm, it is feasible to titrate most carbonate-containing natural waters with acid and observe an increase in %Transmittance. The observed signal is proportional to the concentration of carbonate ion in the original sample. Present technology permits a theoretical precision in the determination of [CO(3)(2-)] in natural seawater background of similar to 0.5% (at 10 cm pathlength, 200 mu M CO(3)(2-), +/- 0.0001 AU). The procedure has been tested at 1 and 10 cm pathlengths using single and multipoint titration methods, respectively. Results using natural seawater test solutions indicate a resolution in [CO(3)(2-)] of 3.6% in a standard I cm cuvette using a very simple manual method, and 0.7% using a custom-built 10 cm closed titration cell. Estimates of the relative distribution of CO(3)(2-) between inner and outer sphere complexes with Mg(2+) and Na(+) were also determined and the equilibrium constants agree with published values. This method provides a new tool for studies of several fundamental aspects CO(2) chemistry, including the second dissociation constant of carbonic acid, CO(3)(2-) ion pairing, and can be used to directly measure the distribution of carbonate ion in seawater and many other types of natural waters. (C) 2009 Elsevier B.V. All rights reserved.

Notes:

n/a

Website

DOI:

10.1016/j.marchem.2009.07.002