Interference Pattern and Propagation of the M(2) Internal Tide South of the Hawaiian Ridge

Rainville, L, Johnston TMS, Carter GS, Merrifield MA, Pinkel R, Worcester PF, Dushaw BD.  2010.  Interference Pattern and Propagation of the M(2) Internal Tide South of the Hawaiian Ridge. Journal of Physical Oceanography. 40:311-325.

Date Published:



altimetry, central north pacific, deep-ocean, energetics, energy fluxes, Islands, scattering, turbulence, variability, waves


Most of the M(2) internal tide energy generated at the Hawaiian Ridge radiates away in modes 1 and 2, but direct observation of these propagating waves is complicated by the complexity of the bathymetry at the generation region and by the presence of interference patterns. Observations from satellite altimetry, a tomographic array, and the R/P FLIP taken during the Farfield Program of the Hawaiian Ocean Mixing Experiment (HOME) are found to be in good agreement with the output of a high-resolution primitive equation model, simulating the generation and propagation of internal tides. The model shows that different modes are generated with different amplitudes along complex topography. Multiple sources produce internal tides that sum constructively and destructively as they propagate. The major generation sites can be identified using a simplified 2D idealized knife-edge ridge model. Four line sources located on the Hawaiian Ridge reproduce the interference pattern of sea surface height and energy flux density fields from the numerical model for modes 1 and 2. Waves from multiple sources and their interference pattern have to be taken into account to correctly interpret in situ observations and satellite altimetry.