Publications

Export 9 results:
Sort by: Author Title Type [ Year  (Desc)]
2019
Green, H, Bailey J, Schwarz L, Vanos J, Ebi K, Benmarhnia T.  2019.  Impact of heat on mortality and morbidity in low and middle income countries: A review of the epidemiological evidence and considerations for future research. Environmental Research. 171:80-91.   10.1016/j.envres.2019.01.010   AbstractWebsite

Heat waves and high air temperature are associated with increased morbidity and mortality. However, the majority of research conducted on this topic is focused on high income areas of the world. Although heat waves have the most severe impacts on vulnerable populations, relatively few studies have studied their impacts in low and middle income countries (LMICs). The aim of this paper is to review the existing evidence in the literature on the impact of heat on human health in LMICs. We identified peer-reviewed epidemiologic studies published in English between January 1980 and August 2018 investigating potential associations between high ambient temperature or heat waves and mortality or morbidity. We selected studies according to the following criteria: quantitative studies that used primary and/or secondary data and report effect estimates where ambient temperature or heat waves are the main exposure of interest in relation to human morbidity or mortality within LMICs. Of the total 146 studies selected, eighty-two were conducted in China, nine in other countries of East Asia and the Pacific, twelve in South Asia, ten in Sub-Saharan Africa, eight in the Middle East and North Africa, and seven in each of Latin America and Europe. The majority of studies (92.9%) found positive associations between heat and human morbidity/mortality. Additionally, while outcome variables and study design differed greatly, most utilized a time-series study design and examined overall heath related morbidity/mortality impacts in an entire population, although it is notable that the selected studies generally found that the elderly, women, and individuals within the low socioeconomic brackets were the most vulnerable to the effects of high temperature. By highlighting the existing evidence on the impact of extreme heat on health in LMICs, we hope to determine data needs and help direct future studies in addressing this knowledge gap. The focus on LMICs is justified by the lack of studies and data studying the health burden of higher temperatures in these regions even though LMICs have a lower capacity to adapt to high temperatures and thus an increased risk.

2018
Loizeau, M, Buteau S, Chaix B, McElroy S, Counil E, Benmarhnia T.  2018.  Does the air pollution model influence the evidence of socio-economic disparities in exposure and susceptibility? Environmental Research. 167:650-661.   10.1016/j.envres.2018.08.002   AbstractWebsite

Studies assessing socio-economic disparities in air pollution exposure and susceptibility are usually based on a single air pollution model. A time stratified case-crossover study was designed to assess the impact of the type of model on differential exposure and on the differential susceptibility in the relationship between ozone exposure and daily mortality by socio-economic strata (SES) in Montreal. Non-accidental deaths along with deaths from cardiovascular and respiratory causes on the island of Montreal for the period 1991-2002 were included as cases. Daily ozone concentration estimates at partictaipants' residence were obtained from the five following air pollution models: Average value (AV), Nearest station model (NS), Inverse-distance weighting interpolation (IDW), Land-use regression model with back-extrapolation (LUR-BE) and Bayesian maximum entropy model combined with a land-use regression (BME-LUR). The prevalence of a low household income ( < 20,000/year) was used as socio-economic variable, divided into two categories as a proxy for deprivation. Multivariable conditional logistic regressions were used considering 3-day average concentrations. Multiplicative and additive interactions (using Relative Excess Risk due to Interaction) as well as Cochran's tests were calculated and results were compared across the different air pollution models. Heterogeneity of susceptibility and exposure according to socio-economic status (SES) were found. Ratio of exposure across SES groups means ranged from 0.75 [0.74-0.76] to 1.01 [1.00-1.02], respectively for the LUR-BE and the BME-LUR models. Ratio of mortality odds ratios ranged from 1.01 [0.96-1.05] to 1.02 [0.97-1.08], respectively for the IDW and LUR-BE models. Cochran's test of heterogeneity between the air pollution models showed important heterogeneity regarding the differential exposure by SES, but the air pollution model was not found to influence heterogeneity regarding the differential susceptibility. The study showed air pollution models can influence the assessment of disparities in exposure according to SES in Montreal but not that of disparities in susceptibility.

Benmarhnia, T, Delpla I, Schwarz L, Rodriguez MJ, Levallois P.  2018.  Heterogeneity in the relationship between disinfection by-products in drinking water and cancer: A systematic review. International Journal of Environmental Research and Public Health. 15   10.3390/ijerph15050979   AbstractWebsite

The epidemiological evidence demonstrating the effect of disinfection by-products (DBPs) from drinking water on colon and rectal cancers is well documented. However, no systematic assessment has been conducted to assess the potential effect measure modification (EMM) in the relationship between DBPs and cancer. The objective of this paper is to conduct a systematic literature review to determine the extent to which EMM has been assessed in the relationship between DBPs in drinking water in past epidemiological studies. Selected articles (n = 19) were reviewed, and effect estimates and covariates that could have been used in an EMM assessment were gathered. Approximately half of the studies assess EMM (n = 10), but the majority of studies only estimate it relative to sex subgroups (n = 6 for bladder cancer and n = 2 both for rectal and colon cancers). Although EMM is rarely assessed, several variables that could have a potential modification effect are routinely collected in these studies, such as socioeconomic status or age. The role of environmental exposures through drinking water can play an important role and contribute to cancer disparities. We encourage a systematic use of subgroup analysis to understand which populations or territories are more vulnerable to the health impacts of DBPs.

Schinasi, LH, Benmarhnia T, De Roos AJ.  2018.  Modification of the association between high ambient temperature and health by urban microclimate indicators: A systematic review and meta-analysis. Environmental Research. 161:168-180.   10.1016/j.envres.2017.11.004   AbstractWebsite

Background: Landscape characteristics, including vegetation and impervious surfaces, influence urban micro climates and may lead to within-city differences in the adverse health effects of high ambient temperatures. Objective: Our objective was to quantitatively summarize the epidemiologic literature that assessed microclimate indicators as effect measure modifiers (EMM) of the association between ambient temperature and mortality or morbidity. Methods: We systematically identified papers and abstracted relative risk estimates for hot and cool micro climate indicator strata. We calculated the ratio of the relative risks (RRR) and 95% confidence intervals (95% CI) to assess differences in health effects across strata, and pooled the RRR estimates using random effects meta analyses. Results: Eleven papers were retained. In the pooled analyses, people living in hotter areas within cities (based on land surface temperature or modeled estimates of air temperature) had 6% higher risk of mortality/morbidity compared to those in cooler areas (95% CI: 1.03-1.09). Those living in less vegetated areas had 5% higher risk compared to those living in more vegetated areas (95% CI: 1.00-1.11). Discussion: There is epidemiologic evidence that those living in hotter, and less vegetated areas of cities have higher risk of morbidity or mortality from higher ambient temperature. Further research with improved assessment of landscape characteristics and investigation of the joint effects of physiologic adaptation and landscape will advance the current understanding. Conclusion: This review provides quantitative evidence that intra-urban differences in landscape characteristics and micro-urban heat islands contribute to within-city variability in the health effects of high ambient temperatures.

2017
Benmarhnia, T, Huang J, Basu R, Wu J, Bruckner TA.  2017.  Decomposition analysis of black-white disparities in birth outcomes: The relative contribution of air pollution and social factors in California. Environmental Health Perspectives. 125   10.1289/ehp490   AbstractWebsite

BACKGROUND: Racial/ethnic disparities in preterm birth (PTB) are well documented in the epidemiological literature, but little is known about the relative contribution of different social and environmental determinants of such disparities in birth outcome. Furthermore, increased focus has recently turned toward modifiable aspects of the environment, including physical characteristics, such as neighborhood air pollution, to reduce disparities in birth outcomes. OBJECTIVES: To apply decomposition methods to understand disparities in preterm birth (PTB) prevalence between births of non-Hispanic black individuals and births of non-Hispanic white individuals in California, according to individual demographics, neighborhood socioeconomic environment, and neighborhood air pollution. METHODS: We used all live singleton births in California spanning 2005 to 2010 and estimated PTBs and other adverse birth outcomes for infants borne by non-Hispanic black mothers and white mothers. To compare individual-level, neighborhood-level, and air pollution [Particulate. Matter, 2.5 micrometers or less (PM2.5) and nitrogen dioxide (NO2)] predictors, we conducted a nonlinear extension of the. Blinder-Oaxaca method to decompose racial/ethnic disparities in PTB. RESULTS: The predicted differences in probability of PTB between black and white infants was 0.056 (95% CI: 0.054, 0.058). All included predictors explained 37.8% of the black-white disparity. Overall, individual (17.5% for PTB) and neighborhood-level variables (16.1% for PTB) explained a greater proportion of the black-white difference in birth outcomes than air pollution (5.7% for PTB). CONCLUSIONS: Our results suggest that, although the role of individual and neighborhood factors remains prevailing in explaining black-white differences in birth outcomes, the individual contribution of PM2.5 is comparable in magnitude to any single individual- or neighborhood-level factor.

Benmarhnia, T, Kihal-Talantikite W, Ragettli MS, Deguen S.  2017.  Small-area spatiotemporal analysis of heatwave impacts on elderly mortality in Paris: A cluster analysis approach. Science of the Total Environment. 592:288-294.   10.1016/j.scitotenv.2017.03.102   AbstractWebsite

Background: Heat-waves have a substantial public health burden. Understanding spatial heterogeneity at a fine spatial scale in relation to heat and related mortality is central to target interventions towards vulnerable communities. Objectives: To determine the spatial variability of heat-wave-related mortality risk among elderly in Paris, France at the census block level. We also aimed to assess area-level social and environmental determinants of high mortality risk within Paris. Methods: We used daily mortality data from 2004 to 2009 among people aged >65 at the French census block level within Paris. We used two heat wave days' definitions that were compared to non-heat wave days. A Bernoulli cluster analysis method was applied to identify high risk clusters of mortality during heat waves. We performed random effects meta-regression analyses to investigate factors associated with the magnitude of the mortality risk. Results: The spatial approach revealed a spatial aggregation of death cases during heat wave days. We found that small scale chronic PM10 exposure was associated with a 0.02 (95% CI: 0.001; 0.045) increase of the risk of dying during a heat wave episode. We also found a positive association with the percentage of foreigners and the percentage of labor force, while the proportion of elderly people living in the neighborhoodwas negatively associated. We also found that green space density had a protective effect and inversely that the density of constructed feature increased the risk of dying during a heat wave episode. Conclusion: We showed that a spatial variation in terms of heat-related vulnerability exists within Paris and that it can be explained by some contextual factors. This study can be useful for designing interventions targeting more vulnerable areas and reduce the burden of heat waves. (C) 2017 Elsevier B.V. All rights reserved.

Perchoux, C, Nazare JA, Benmarhnia T, Salze P, Feuillet T, Hercberg S, Hess F, Menai M, Weber C, Charreire H, Enaux C, Oppert JM, Simon C.  2017.  Neighborhood educational disparities in active commuting among women: the effect of distance between the place of residence and the place of work/study (an ACTI-Cites study). Bmc Public Health. 17   10.1186/s12889-017-4464-8   AbstractWebsite

Background: Active transportation has been associated with favorable health outcomes. Previous research highlighted the influence of neighborhood educational level on active transportation. However, little is known regarding the effect of commuting distance on social disparities in active commuting. In this regard, women have been poorly studied. The objective of this paper was to evaluate the relationship between neighborhood educational level and active commuting, and to assess whether the commuting distance modifies this relationship in adult women. Methods: This cross-sectional study is based on a subsample of women from the Nutrinet-Sante web-cohort (N = 1169). Binomial, log-binomial and negative binomial regressions were used to assess the associations between neighborhood education level and (i) the likelihood of reporting any active commuting time, and (ii) the share of commuting time made by active transportation modes. Potential effect measure modification of distance to work on the previous associations was assessed both on the additive and the multiplicative scales. Results: Neighborhood education level was positively associated with the probability of reporting any active commuting time (relative risk = 1.774; p < 0.05) and the share of commuting time spent active (relative risk = 1.423; p < 0.05). The impact of neighborhood education was greater at long distances to work for both outcomes. Conclusions: Our results suggest that neighborhood educational disparities in active commuting tend to increase with commuting distance among women. Further research is needed to provide geographically driven guidance for health promotion intervention aiming at reducing disparities in active transportation among socioeconomic groups.

2015
Schwarz, L, Benmarhnia T, Laurian L.  2015.  Social Inequalities Related to Hazardous Incinerator Emissions: An Additional Level of Environmental Injustice. Environmental Justice. 8:213-219.   10.1089/env.2015.0022   AbstractWebsite

Environmental justice (EJ) research focuses on disproportionate population exposures to multiple point and non-point pollution sources. The hazardous pollutants released by waste incinerators can contribute to uneven (or unjust) spatial and social distributions of environmental risks. The EJ literature has already revealed that the geographical distribution of incinerators generates distinct social inequalities. In the French context, these inequalities are evident when considering the proportion of unemployed people, the proportion of recent immigrants and the proportion of persons born abroad (each increases the likelihood that a town hosts an incinerator). In this article, we seek to determine whether additional social injustices occur due to disproportionate quantities of incinerator emissions. We collected annual nitrogen oxide (NOx) emissions from all incinerators in France for 2009-2010. We found that incinerators in French municipalities with higher unemployment and higher proportions of immigrants and persons born abroad have higher NOx emission levels, even when controlling for population size and broader regional social and environmental deprivation indices. This indicates that incinerators in France generate higher social inequalities than initially thought, both due to their spatial distribution and to the amount of emissions they release. We recommend that unequal social impacts should be considered in waste management planning, facility siting decisions, and decisions affecting emission controls for existing and possible future incinerators in France.

Cartier, Y, Benmarhnia T, Brousselle A.  2015.  Tool for assessing health and equity impacts of interventions modifying air quality in urban environments. Evaluation and Program Planning. 53:1-9.   10.1016/j.evalprogplan.2015.07.004   AbstractWebsite

Background: Urban outdoor air pollution (AP) is a major public health concern but the mechanisms by which interventions impact health and social inequities are rarely assessed. Health and equity impacts of policies and interventions are questioned, but managers and policy agents in various institutional contexts have very few practical tools to help them better orient interventions in sectors other than the health sector. Our objective was to create such a tool to facilitate the assessment of health impacts of urban outdoor AP interventions by non-public health experts.Methods: An iterative process of reviewing the academic literature, brainstorming, and consultation with experts was used to identify the chain of effects of urban outdoor AP and the major modifying factors. To test its applicability, the tool was applied to two interventions, the London Low Emission Zone and the Montreal BIXI public bicycle-sharing program.Results: We identify the chain of effects, six categories of modifying factors: those controlling the source of emissions, the quantity of emissions, concentrations of emitted pollutants, their spatial distribution, personal exposure, and individual vulnerability. Modifiable and non-modifiable factors are also identified. Results are presented in the text but also graphically, as we wanted it to be a practical tool, from pollution sources to emission, exposure, and finally, health effects.Conclusion: The tool represents a practical first step to assessing AP-related interventions for health and equity impacts. Understanding how different factors affect health and equity through air pollution can provide insight to city policymakers pursuing Health in All Policies. (C) 2015 The Authors. Published by Elsevier Ltd.