Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
Nori-Sarma, A, Benmarhnia T, Rajiva A, Azhar GS, Gupta P, Pednekar MS, Bell ML.  2019.  Advancing our understanding of heat wave criteria and associated health impacts to improve heat wave alerts in developing country settings. International Journal of Environmental Research and Public Health. 16   10.3390/ijerph16122089   AbstractWebsite

Health effects of heat waves with high baseline temperatures in areas such as India remain a critical research gap. In these regions, extreme temperatures may affect the underlying population's adaptive capacity; heat wave alerts should be optimized to avoid continuous high alert status and enhance constrained resources, especially under a changing climate. Data from registrars and meteorological departments were collected for four communities in Northwestern India. Propensity Score Matching (PSM) was used to obtain the relative risk of mortality and number of attributable deaths (i.e., absolute risk which incorporates the number of heat wave days) under a variety of heat wave definitions (n = 13) incorporating duration and intensity. Heat waves' timing in season was also assessed for potential effect modification. Relative risk of heat waves (risk of mortality comparing heat wave days to matched non-heat wave days) varied by heat wave definition and ranged from 1.28 [95% Confidence Interval: 1.11-1.46] in Churu (utilizing the 95th percentile of temperature for at least two consecutive days) to 1.03 [95% CI: 0.87-1.23] in Idar and Himmatnagar (utilizing the 95th percentile of temperature for at least four consecutive days). The data trended towards a higher risk for heat waves later in the season. Some heat wave definitions displayed similar attributable mortalities despite differences in the number of identified heat wave days. These findings provide opportunities to assess the "efficiency" (or number of days versus potential attributable health impacts) associated with alternative heat wave definitions. Findings on both effect modification and trade-offs between number of days identified as "heat wave" versus health effects provide tools for policy makers to determine the most important criteria for defining thresholds to trigger heat wave alerts.

Heo, S, Nori-Sarma A, Lee K, Benmarhnia T, Dominici F, Bell ML.  2019.  The use of a quasi-experimental study on the mortality effect of a heat wave warning system in Korea. International Journal of Environmental Research and Public Health. 16   10.3390/ijerph16122245   AbstractWebsite

Many cities and countries have implemented heat wave warning systems to combat the health effects of extreme heat. Little is known about whether these systems actually reduce heat-related morbidity and mortality. We examined the effectiveness of heat wave alerts and health plans in reducing the mortality risk of heat waves in Korea by utilizing the discrepancy between the alerts and the monitored temperature. A difference-in-differences analysis combined with propensity score weighting was used. Mortality, weather monitoring, and heat wave alert announcement data were collected for 7 major cities during 2009-2014. Results showed evidence of risk reduction among people aged 19-64 without education (-0.144 deaths/1,000,000 people, 95% CI: -0.227, -0.061) and children aged 0-19 (-0.555 deaths/1,000,000 people, 95% CI: -0.993, -0.117). Decreased cardiovascular and respiratory mortality was found in several subgroups including single persons, widowed people, blue-collar workers, people with no education or the highest level of education (university or higher). No evidence was found for decreased all-cause mortality in the population (1.687 deaths/1,000,000 people per day; 95% CI: 1.118, 2.255). In conclusion, heat wave alerts may reduce mortality for several causes and subpopulations of age and socio-economic status. Further work needs to examine the pathways through which the alerts impact subpopulations differently.

Benmarhnia, T, Grenier P, Brand A, Fournier M, Deguen S, Smargiassi A.  2015.  Quantifying Vulnerability to Extreme Heat in Time Series Analyses: A Novel Approach Applied to Neighborhood Social Disparities under Climate Change. International Journal of Environmental Research and Public Health. 12:11869-11879.   10.3390/ijerph120911869   AbstractWebsite

Objectives: We propose a novel approach to examine vulnerability in the relationship between heat and years of life lost and apply to neighborhood social disparities in Montreal and Paris. Methods: We used historical data from the summers of 1990 through 2007 for Montreal and from 2004 through 2009 for Paris to estimate daily years of life lost social disparities (DYLLD), summarizing social inequalities across groups. We used Generalized Linear Models to separately estimate relative risks (RR) for DYLLD in association with daily mean temperatures in both cities. We used 30 climate scenarios of daily mean temperature to estimate future temperature distributions (2021-2050). We performed random effect meta-analyses to assess the impact of climate change by climate scenario for each city and compared the impact of climate change for the two cities using a meta-regression analysis. Results: We show that an increase in ambient temperature leads to an increase in social disparities in daily years of life lost. The impact of climate change on DYLLD attributable to temperature was of 2.06 (95% CI: 1.90, 2.25) in Montreal and 1.77 (95% CI: 1.61, 1.94) in Paris. The city explained a difference of 0.31 (95% CI: 0.14, 0.49) on the impact of climate change. Conclusion: We propose a new analytical approach for estimating vulnerability in the relationship between heat and health. Our results suggest that in Paris and Montreal, health disparities related to heat impacts exist today and will increase in the future.