Publications

Export 3 results:
Sort by: Author Title [ Type  (Asc)] Year
Journal Article
Wang, Q, Benmarhnia T, Zhang HH, Knibbs LD, Sheridan P, Li CC, Bao JZ, Ren M, Wang SH, He YL, Zhang YW, Zhao QG, Huang CR.  2018.  Identifying windows of susceptibility for maternal exposure to ambient air pollution and preterm birth. Environment International. 121:317-324.   10.1016/j.envint.2018.09.021   AbstractWebsite

Maternal exposure to ambient air pollution has been associated with preterm birth (PTB), however, entire pregnancy or trimester-specific associations were generally reported, which may not sufficiently identify windows of susceptibility. Using birth registry data from Guangzhou, a megacity of southern China (population -14.5 million), including 469,975 singleton live births between January 2015 and July 2017, we assessed the association between weekly air pollution exposure and PTB in a retrospective cohort study. Daily average concentrations of PM2.5, PM10, NO2, SO2, and O-3 from 11 monitoring stations were used to estimate district-specific exposures for each participant based on their district residency during pregnancy. Distributed lag models (DLMs) incorporating Cox proportional hazard models were applied to estimate the association between weekly maternal exposure to air pollutant and PTB risk (as a time-to-event outcome), after controlling for temperature, seasonally, and individual-level covariates. We also considered moderate PTB (32-36 gestational weeks) and very PTB (28-31 gestational weeks) as outcomes of interest. Hazard ratios (HRs) and 95% confidential intervals (95% CIs) were calculated for an interquartile range (IQR) increase in air pollutants during the study period. An IQR increase in PM2.5 exposure during the 20th to 28th gestational weeks (27.0 mu g/m(3)) was significantly associated with PTB risk, with the strongest effect in the 25th week (HR = 1.034, 95% CI:1.010-1.059). The significant exposure windows were the 19th-28th weeks for PM10, the 18th-31st weeks for NO2, and the 23rd-31A weeks for O-3, respectively. The strongest associations were observed in the 25th week for PM10 (IQR = 37.0 mu g/m(3); HR = 1.048, 95% CI:1.034-1.062), the 26th week for NO2 (IQR = 29.0 mu g/m(3); HR = 1.060, 95% CI:1.028-1.094), and in the 28th week for O-3 (IQR = 90.0 mu g/m(3); HR = 1.063, 95% CI:1.046-1.081). Similar patterns were observed for moderate PTB (32-36 gestational weeks) and very PTB (28-31 gestational weeks) for PM2.5, PM10, NO2 exposure, but the effects were greater for very PTB. We did not observe any association between pregnancy SO2 exposure and the risk of PTB. Our results suggest that middle to late pregnancy is the most susceptible air pollution exposure window for air pollution and PTB among women in Guangzhou, China.

Schinasi, LH, Benmarhnia T, De Roos AJ.  2018.  Modification of the association between high ambient temperature and health by urban microclimate indicators: A systematic review and meta-analysis. Environmental Research. 161:168-180.   10.1016/j.envres.2017.11.004   AbstractWebsite

Background: Landscape characteristics, including vegetation and impervious surfaces, influence urban micro climates and may lead to within-city differences in the adverse health effects of high ambient temperatures. Objective: Our objective was to quantitatively summarize the epidemiologic literature that assessed microclimate indicators as effect measure modifiers (EMM) of the association between ambient temperature and mortality or morbidity. Methods: We systematically identified papers and abstracted relative risk estimates for hot and cool micro climate indicator strata. We calculated the ratio of the relative risks (RRR) and 95% confidence intervals (95% CI) to assess differences in health effects across strata, and pooled the RRR estimates using random effects meta analyses. Results: Eleven papers were retained. In the pooled analyses, people living in hotter areas within cities (based on land surface temperature or modeled estimates of air temperature) had 6% higher risk of mortality/morbidity compared to those in cooler areas (95% CI: 1.03-1.09). Those living in less vegetated areas had 5% higher risk compared to those living in more vegetated areas (95% CI: 1.00-1.11). Discussion: There is epidemiologic evidence that those living in hotter, and less vegetated areas of cities have higher risk of morbidity or mortality from higher ambient temperature. Further research with improved assessment of landscape characteristics and investigation of the joint effects of physiologic adaptation and landscape will advance the current understanding. Conclusion: This review provides quantitative evidence that intra-urban differences in landscape characteristics and micro-urban heat islands contribute to within-city variability in the health effects of high ambient temperatures.

Benmarhnia, T, Auger N, Stanislas V, Lo E, Kaufman JS.  2015.  The relationship between apparent temperature and daily number of live births in Montreal. Maternal and Child Health Journal. 19:2548-2551.   10.1007/s10995-015-1794-y   AbstractWebsite

Temperature is a hypothesized determinant of early delivery, but seasonal and long term trends, delayed effects of temperature, and the influence of extreme cold temperatures have not yet been addressed. We aim to study the influence of apparent temperature on daily number of births, considering lag structures, seasonality and long term trends.We used daily number of births in conjunction with apparent outdoor temperatures between 1981 and 2010 in Montreal. We used Poisson regression combined with a distributed lag nonlinear model to consider non-linear relationships between temperature and daily number of births across specific lag periods.We found that apparent temperature was associated with the daily number of births in Montreal, with a 1-day delay. We found an increase in births on hot days, and decrease on cold days, both offset by a harvesting effect after 4 and 5 days.This study suggests that the number of births is affected by extreme temperatures. Obstetric and perinatal service providers should be prepared for spikes in the number of births caused by extreme temperatures.