Publications

Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
2019
Wang, Q, Benmarhnia T, Li CC, Knibbs LD, Bao JZ, Ren M, Zhang HH, Wang SH, Zhang YW, Zhao QG, Huang CR.  2019.  Seasonal analyses of the association between prenatal ambient air pollution exposure and birth weight for gestational age in Guangzhou, China. Science of the Total Environment. 649:526-534.   10.1016/j.scitotenv.2018.08.303   AbstractWebsite

Ambient air pollution has been linked to small for gestational age (SGA); however, the relationship with large for gestational age (ILA) is unclear and very few studies have investigated seasonal effects on the association between air pollution and SGA or LGA. Using birth registry data of 506,000 singleton live births from 11 districts in Guangzhou, China between January 2015 and July 2017, we examined associations between ambient air pollutants (PM2.5, PM10, NO2, SO2, and O-3) and SGA/LGA, and further assessed the modification effect of season. Daily concentrations of air pollutants from 11 monitoring stations were used to estimate district-specific exposures for each participant based on their district of residence during pregnancy. Two-level binary logistic regression models were used to evaluate associations between air pollution and SGA/LGA. Stratified analyses by season and a Cochran Q test were performed to assess the modification of season. Exposure to PM2.5, NO2, SO2, and O-3 was significantly associated with increased risk of SGA, especially for exposure during the second and trimester. For an interquartile range (IQR) increase in PM2.5(6.5 mu g/m(3)), NO2 (12.7 mu g/m(3)), SO2 (2.8 mu g/m(3)) and O-3 (20.8 mu g/m(3)) during the entire pregnancy, SGA risk increased by 2% (OR - 1.02, 95% CI: 1.00-1.04), 8% (OR = 1.08, 95% CI: 1.04-1.12), 2% (OR - 1.02, 95% CI: 1.01-1.03), and 14% (1.14, 1.11-1.17), respectively. A decreased risk of WA was found for PM2.5, PM10, SO2, and O-3 during the first trimester or entire pregnancy. When examined by season, significant associations between air pollutants and SGA were observed for women who conceived during summer or fall, and the patterns were consistent for all pollutants. Our study suggests that conception during different seasons might modify the association between ambient air pollution and SGA. (C) 2018 Elsevier B.V. All rights reserved.

2018
Wang, Q, Benmarhnia T, Zhang HH, Knibbs LD, Sheridan P, Li CC, Bao JZ, Ren M, Wang SH, He YL, Zhang YW, Zhao QG, Huang CR.  2018.  Identifying windows of susceptibility for maternal exposure to ambient air pollution and preterm birth. Environment International. 121:317-324.   10.1016/j.envint.2018.09.021   AbstractWebsite

Maternal exposure to ambient air pollution has been associated with preterm birth (PTB), however, entire pregnancy or trimester-specific associations were generally reported, which may not sufficiently identify windows of susceptibility. Using birth registry data from Guangzhou, a megacity of southern China (population -14.5 million), including 469,975 singleton live births between January 2015 and July 2017, we assessed the association between weekly air pollution exposure and PTB in a retrospective cohort study. Daily average concentrations of PM2.5, PM10, NO2, SO2, and O-3 from 11 monitoring stations were used to estimate district-specific exposures for each participant based on their district residency during pregnancy. Distributed lag models (DLMs) incorporating Cox proportional hazard models were applied to estimate the association between weekly maternal exposure to air pollutant and PTB risk (as a time-to-event outcome), after controlling for temperature, seasonally, and individual-level covariates. We also considered moderate PTB (32-36 gestational weeks) and very PTB (28-31 gestational weeks) as outcomes of interest. Hazard ratios (HRs) and 95% confidential intervals (95% CIs) were calculated for an interquartile range (IQR) increase in air pollutants during the study period. An IQR increase in PM2.5 exposure during the 20th to 28th gestational weeks (27.0 mu g/m(3)) was significantly associated with PTB risk, with the strongest effect in the 25th week (HR = 1.034, 95% CI:1.010-1.059). The significant exposure windows were the 19th-28th weeks for PM10, the 18th-31st weeks for NO2, and the 23rd-31A weeks for O-3, respectively. The strongest associations were observed in the 25th week for PM10 (IQR = 37.0 mu g/m(3); HR = 1.048, 95% CI:1.034-1.062), the 26th week for NO2 (IQR = 29.0 mu g/m(3); HR = 1.060, 95% CI:1.028-1.094), and in the 28th week for O-3 (IQR = 90.0 mu g/m(3); HR = 1.063, 95% CI:1.046-1.081). Similar patterns were observed for moderate PTB (32-36 gestational weeks) and very PTB (28-31 gestational weeks) for PM2.5, PM10, NO2 exposure, but the effects were greater for very PTB. We did not observe any association between pregnancy SO2 exposure and the risk of PTB. Our results suggest that middle to late pregnancy is the most susceptible air pollution exposure window for air pollution and PTB among women in Guangzhou, China.

2017
Benmarhnia, T, Huang J, Basu R, Wu J, Bruckner TA.  2017.  Decomposition analysis of black-white disparities in birth outcomes: The relative contribution of air pollution and social factors in California. Environmental Health Perspectives. 125   10.1289/ehp490   AbstractWebsite

BACKGROUND: Racial/ethnic disparities in preterm birth (PTB) are well documented in the epidemiological literature, but little is known about the relative contribution of different social and environmental determinants of such disparities in birth outcome. Furthermore, increased focus has recently turned toward modifiable aspects of the environment, including physical characteristics, such as neighborhood air pollution, to reduce disparities in birth outcomes. OBJECTIVES: To apply decomposition methods to understand disparities in preterm birth (PTB) prevalence between births of non-Hispanic black individuals and births of non-Hispanic white individuals in California, according to individual demographics, neighborhood socioeconomic environment, and neighborhood air pollution. METHODS: We used all live singleton births in California spanning 2005 to 2010 and estimated PTBs and other adverse birth outcomes for infants borne by non-Hispanic black mothers and white mothers. To compare individual-level, neighborhood-level, and air pollution [Particulate. Matter, 2.5 micrometers or less (PM2.5) and nitrogen dioxide (NO2)] predictors, we conducted a nonlinear extension of the. Blinder-Oaxaca method to decompose racial/ethnic disparities in PTB. RESULTS: The predicted differences in probability of PTB between black and white infants was 0.056 (95% CI: 0.054, 0.058). All included predictors explained 37.8% of the black-white disparity. Overall, individual (17.5% for PTB) and neighborhood-level variables (16.1% for PTB) explained a greater proportion of the black-white difference in birth outcomes than air pollution (5.7% for PTB). CONCLUSIONS: Our results suggest that, although the role of individual and neighborhood factors remains prevailing in explaining black-white differences in birth outcomes, the individual contribution of PM2.5 is comparable in magnitude to any single individual- or neighborhood-level factor.

2015
Benmarhnia, T, Auger N, Stanislas V, Lo E, Kaufman JS.  2015.  The relationship between apparent temperature and daily number of live births in Montreal. Maternal and Child Health Journal. 19:2548-2551.   10.1007/s10995-015-1794-y   AbstractWebsite

Temperature is a hypothesized determinant of early delivery, but seasonal and long term trends, delayed effects of temperature, and the influence of extreme cold temperatures have not yet been addressed. We aim to study the influence of apparent temperature on daily number of births, considering lag structures, seasonality and long term trends.We used daily number of births in conjunction with apparent outdoor temperatures between 1981 and 2010 in Montreal. We used Poisson regression combined with a distributed lag nonlinear model to consider non-linear relationships between temperature and daily number of births across specific lag periods.We found that apparent temperature was associated with the daily number of births in Montreal, with a 1-day delay. We found an increase in births on hot days, and decrease on cold days, both offset by a harvesting effect after 4 and 5 days.This study suggests that the number of births is affected by extreme temperatures. Obstetric and perinatal service providers should be prepared for spikes in the number of births caused by extreme temperatures.