Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
Benmarhnia, T, Grenier P, Brand A, Fournier M, Deguen S, Smargiassi A.  2015.  Quantifying Vulnerability to Extreme Heat in Time Series Analyses: A Novel Approach Applied to Neighborhood Social Disparities under Climate Change. International Journal of Environmental Research and Public Health. 12:11869-11879.   10.3390/ijerph120911869   AbstractWebsite

Objectives: We propose a novel approach to examine vulnerability in the relationship between heat and years of life lost and apply to neighborhood social disparities in Montreal and Paris. Methods: We used historical data from the summers of 1990 through 2007 for Montreal and from 2004 through 2009 for Paris to estimate daily years of life lost social disparities (DYLLD), summarizing social inequalities across groups. We used Generalized Linear Models to separately estimate relative risks (RR) for DYLLD in association with daily mean temperatures in both cities. We used 30 climate scenarios of daily mean temperature to estimate future temperature distributions (2021-2050). We performed random effect meta-analyses to assess the impact of climate change by climate scenario for each city and compared the impact of climate change for the two cities using a meta-regression analysis. Results: We show that an increase in ambient temperature leads to an increase in social disparities in daily years of life lost. The impact of climate change on DYLLD attributable to temperature was of 2.06 (95% CI: 1.90, 2.25) in Montreal and 1.77 (95% CI: 1.61, 1.94) in Paris. The city explained a difference of 0.31 (95% CI: 0.14, 0.49) on the impact of climate change. Conclusion: We propose a new analytical approach for estimating vulnerability in the relationship between heat and health. Our results suggest that in Paris and Montreal, health disparities related to heat impacts exist today and will increase in the future.

Benmarhnia, T, Oulhote Y, Petit C, Lapostolle A, Chauvin P, Zmirou-Navier D, Deguen S.  2014.  Chronic air pollution and social deprivation as modifiers of the association between high temperature and daily mortality. Environmental Health. 13   Artn 5310.1186/1476-069x-13-53   AbstractWebsite

Background: Heat and air pollution are both associated with increases in mortality. However, the interactive effect of temperature and air pollution on mortality remains unsettled. Similarly, the relationship between air pollution, air temperature, and social deprivation has never been explored.Methods: We used daily mortality data from 2004 to 2009, daily mean temperature variables and relative humidity, for Paris, France. Estimates of chronic exposure to air pollution and social deprivation at a small spatial scale were calculated and split into three strata. We developed a stratified Poisson regression models to assess daily temperature and mortality associations, and tested the heterogeneity of the regression coefficients of the different strata. Deaths due to ambient temperature were calculated from attributable fractions and mortality rates were estimated.Results: We found that chronic air pollution exposure and social deprivation are effect modifiers of the association between daily temperature and mortality. We found a potential interactive effect between social deprivation and chronic exposure with regards to air pollution in the mortality-temperature relationship.Conclusion: Our results may have implications in considering chronically polluted areas as vulnerable in heat action plans and in the long-term measures to reduce the burden of heat stress especially in the context of climate change.