Publications

Export 320 results:
Sort by: Author [ Title  (Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
W
Li, JX, Wang GH, Xie SP, Zhang R, Sun ZY.  2012.  A winter warm pool southwest of Hainan Island due to the orographic wind wake. Journal of Geophysical Research-Oceans. 117   10.1029/2012jc008189   Abstract

A winter warm pool off the southwest coast of Hainan Island is uncovered from high resolution satellite measurements and field observations. The warm pool is characterized by warm temperature relative to the surroundings. It forms in October, intensifies from November to next January, and decays in February. Our results show that the wind wake in the northeast winter monsoon due to the orographic blockage by mountains of Hainan Island plays an important role in generating the warm pool by reducing surface latent heat flux. The core temperature of the warm pool is correlated with the El Nino and Southern Oscillation.

de Szoeke, SP, Xie SP, Miyama T, Richards KJ, Small RJO.  2007.  What maintains the SST front north of the eastern Pacific equatorial cold tongue?* Journal of Climate. 20:2500-2514.   10.1175/jcli4173.1   Abstract
n/a
Richter, I, Behera SK, Doi T, Taguchi B, Masumoto Y, Xie SP.  2014.  What controls equatorial Atlantic winds in boreal spring? Climate Dynamics. 43:3091-3104.   10.1007/s00382-014-2170-0   AbstractWebsite

The factors controlling equatorial Atlantic winds in boreal spring are examined using both observations and general circulation model (GCM) simulations from the coupled model intercomparison phase 5. The results show that the prevailing surface easterlies flow against the attendant pressure gradient and must therefore be maintained by other terms in the momentum budget. An important contribution comes from meridional advection of zonal momentum but the dominant contribution is the vertical transport of zonal momentum from the free troposphere to the surface. This implies that surface winds are strongly influenced by conditions in the free troposphere, chiefly pressure gradients and, to a lesser extent, meridional advection. Both factors are linked to the patterns of deep convection. Applying these findings to GCM errors indicates, that, consistent with the results of previous studies, the persistent westerly surface wind bias found in most GCMs is due mostly to precipitation errors, in particular excessive precipitation south of the equator over the ocean and deficient precipitation over equatorial South America. Free tropospheric influences also dominate the interannual variability of surface winds in boreal spring. GCM experiments with prescribed climatological sea-surface temperatures (SSTs) indicate that the free tropospheric influences are mostly associated with internal atmospheric variability. Since the surface wind anomalies in boreal spring are crucial to the development of warm SST events (Atlantic Ninos), the results imply that interannual variability in the region may rely far less on coupled air-sea feedbacks than is the case in the tropical Pacific.

Xie, SP.  1996.  Westward propagation of latitudinal asymmetry in a coupled ocean-atmosphere model. Journal of the Atmospheric Sciences. 53:3236-3250. Abstract
n/a
Li, G, Xie SP, He C, Chen ZS.  2017.  Western Pacific emergent constraint lowers projected increase in Indian summer monsoon rainfall. Nature Climate Change. 7:708-+.   10.1038/nclimate3387   AbstractWebsite

The agrarian-based socioeconomic livelihood of densely populated South Asian countries is vulnerable to modest changes in Indian summer monsoon (ISM) rainfall(1-3). How the ISM rainfall will evolve is a question of broad scientific and socioeconomic importance(3-9). In response to increased greenhouse gas (GHG) forcing, climate models commonly project an increase in ISM rainfall(4-9). This wetter ISM projection, however, does not consider large model errors in both the mean state and ocean warming pattern(9-11). Here we identify a relationship between biases in simulated present climate and future ISM projections in a multi-model ensemble: models with excessive present-day precipitation over the tropical western Pacific tend to project a larger increase in ISM rainfall under GHG forcing because of too strong a negative cloud-radiation feedback on sea surface temperature. The excessive negative feedback suppresses the local ocean surface warming, strengthening ISM rainfall projections via atmospheric circulation. We calibrate the ISM rainfall projections using this 'present-future relationship' and observed western Pacific precipitation. The correction reduces by about 50% of the projected rainfall increase over the broad ISM region. Our study identifies an improved simulation of western Pacific convection as a priority for reliable ISM projections.

Lin, XP, Xie SP, Chen XP, Xu LL.  2006.  A well-mixed warm water column in the central Bohai Sea in summer: Effects of tidal and surface wave mixing. Journal of Geophysical Research-Oceans. 111   10.1029/2006jc003504   Abstract
n/a
Tokinaga, H, Xie S-P.  2011.  Weakening of the equatorial Atlantic cold tongue over the past six decades. Nature Geoscience. 4:222-226.   10.1038/ngeo1078   Abstract
n/a
Tokinaga, H, Xie S-P.  2011.  Wave- and Anemometer-Based Sea Surface Wind (WASWind) for Climate Change Analysis. Journal of Climate. 24:267-285.   10.1175/2010jcli3789.1   Abstract
n/a
V
Mei, W, Xie SP, Zhao M.  2014.  Variability of tropical cyclone track density in the North Atlantic: Observations and high-resolution simulations. Journal of Climate. 27:4797-4814.   10.1175/jcli-d-13-00587.1   AbstractWebsite

Interannual-decadal variability of tropical cyclone (TC) track density over the North Atlantic (NA) between 1979 and 2008 is studied using observations and simulations with a 25-km-resolution version of the High Resolution Atmospheric Model (HiRAM) forced by observed sea surface temperatures (SSTs). The variability on decadal and interannual time scales is examined separately. On both time scales, a basinwide mode dominates, with the time series being related to variations in seasonal TC counts. On decadal time scales, this mode relates to SST contrasts between the tropical NA and the tropical northeast Pacific as well as the tropical South Atlantic, whereas on interannual time scales it is controlled by SSTs over the central eastern equatorial Pacific and those over the tropical NA. The temporal evolution of the spatial distribution of track density is further investigated by normalizing the track density with seasonal TC counts. On decadal time scales, two modes emerge: one is an oscillation between track density over the U.S. East Coast and midlatitude ocean and that over the Gulf of Mexico and the Caribbean Sea and the other oscillates between low and middle latitudes. They might be driven by the preceding winter North Atlantic Oscillation and concurrent Atlantic meridional mode, respectively. On interannual time scales, two similar modes are present in observations but are not well separated in HiRAM simulations. Finally, the internal variability and predictability of TC track density are explored and discussed using HiRAM ensemble simulations. The results suggest that basinwide total TC counts/days are much more predictable than local TC occurrence, posing a serious challenge to the prediction and projection of regional TC threats, especially the U.S. landfall hurricanes.

Mei, W, Kamae Y, Xie SP, Yoshida K.  2019.  Variability and predictability of North Atlantic hurricane frequency in a large ensemble of high-resolution atmospheric simulations. Journal of Climate. 32:3153-3167.   10.1175/jcli-d-18-0554.1   AbstractWebsite

Variability of North Atlantic annual hurricane frequency during 1951-2010 is studied using a 100-member ensemble of climate simulations by a 60-km atmospheric general circulation model that is forced by observed sea surface temperatures (SSTs). The ensemble mean results well capture the interannual-to-decadal variability of hurricane frequency in best track data since 1970, and suggest that the current best track data might underestimate hurricane frequency prior to 1966 when satellite measurements were unavailable. A genesis potential index (GPI) averaged over the main development region (MDR) accounts for more than 80% of the SST-forced variations in hurricane frequency, with potential intensity and vertical wind shear being the dominant factors. In line with previous studies, the difference between MDR SST and tropical mean SST is a useful predictor; a 1 degrees C increase in this SST difference produces 7.05 +/- 1.39 more hurricanes. The hurricane frequency also exhibits strong internal variability that is systematically larger in the model than observations. The seasonal-mean environment is highly correlated among ensemble members and contributes to less than 10% of the ensemble spread in hurricane frequency. The strong internal variability is suggested to originate from weather to intraseasonal variability and nonlinearity. In practice, a 20-member ensemble is sufficient to capture the SST-forced variability.

U
Fujiwara, M, Xie SP, Shiotani M, Hashizume H, Hasebe F, Vomel H, Oltmans SJ, Watanabe T.  2003.  Upper-tropospheric inversion and easterly jet in the tropics. Journal of Geophysical Research-Atmospheres. 108   10.1029/2003jd003928   Abstract
n/a
Liu, W, Lu J, Xie SP.  2015.  Understanding the Indian Ocean response to double CO2 forcing in a coupled model. Ocean Dynamics. 65:1037-1046.   10.1007/s10236-015-0854-6   AbstractWebsite

This study investigates the roles of multiple ocean-atmospheric feedbacks in the oceanic response to increased carbon dioxide by applying an overriding technique to a coupled climate model. The annual-mean sea surface temperature (SST) response in the Indian Ocean exhibits a zonal-dipolar warming pattern, with a reduced warming in the eastern and enhanced warming in the western tropical Indian Ocean (TIO), reminiscent of the Indian Ocean Dipole (IOD) pattern. The development of the dipole pattern exhibits a pronounced seasonal evolution. The overriding experiments show that the wind-evaporation-sea surface temperature (WES) feedback accounts for most of the enhanced warming in the western and central TIO during May-July with reduced southerly monsoonal wind and contributes partially to the reduced warming in the eastern TIO during June-September. The Bjerknes feedback explains most of the reduced warming in the eastern TIO during August-October, accompanied by a reduction of precipitation, easterly wind anomalies, and a thermocline shoaling along the equator. Both feedbacks facilitate the formation of the dipolar warming pattern in the TIO. The residual from the Bjerknes and WES feedbacks is attributable to the "static" response to increasing CO2. While the static SST response also contributes to the seasonal SST variations, the static precipitation response is relatively uniform in the TIO, appearing as a general increase of precipitation along the equatorial Indian Ocean during June-September.

Long, SM, Xie SP.  2016.  Uncertainty in tropical rainfall projections: Atmospheric circulation effect and the ocean coupling. Journal of Climate. 29:2671-2687.   10.1175/jcli-d-15-0601.1   AbstractWebsite

Uncertainty in tropical rainfall projections under increasing radiative forcing is studied by using 26 models from phase 5 of the Coupled Model Intercomparison Project. Intermodel spread in projected rainfall change generally increases with interactive sea surface temperature (SST) warming in coupled models compared to atmospheric models with a common pattern of prescribed SST increase. Moisture budget analyses reveal that much of the model uncertainty in tropical rainfall projections originates from intermodel discrepancies in the dynamical contribution due to atmospheric circulation change. Intermodel singular value decomposition (SVD) analyses further show a tight coupling between the intermodel variations in SST warming pattern and circulation change in the tropics. In the zonal mean, the first SVD mode features an anomalous interhemispheric Hadley circulation, while the second mode displays an SST peak near the equator. The asymmetric mode is accompanied by a coupled pattern of wind-evaporation-SST feedback in the tropics and is further tied to interhemispheric asymmetric change in extratropical shortwave radiative flux at the top of the atmosphere. Intermodel variability in the tropical circulation change exerts a strong control on the spread in tropical cloud cover change and cloud radiative effects among models. The results indicate that understanding the coupling between the anthropogenic changes in SST pattern and atmospheric circulation holds the key to reducing uncertainties in projections of future changes in tropical rainfall and clouds.

T
Liu, JW, Zhang SP, Xie SP.  2013.  Two types of surface wind response to the East China Sea Kuroshio Front. Journal of Climate. 26:8616-8627.   10.1175/jcli-d-12-00092.1   AbstractWebsite

Effects of the sea surface temperature (SST) front along the East China Sea Kuroshio on sea surface winds at different time scales are investigated. In winter and spring, the climatological vector wind is strongest on the SST front while the scalar wind speed reaches a maximum on the warm flank of the front and is collocated with the maximum difference between sea surface temperature and surface air temperature (SST - SAT). The distinction is due to the change in relative importance of two physical processes of SST-wind interaction at different time scales. The SST front-induced sea surface level pressure (SLP) adjustment (SF-SLP) contributes to a strong vector wind above the front on long time scales, consistent with the collocation of baroclinicity in the marine boundary layer and corroborated by the similarity between the thermal wind and observed wind shear between 1000 and 850 hPa. In contrast, the SST modulation of synoptic winds is more evident on the warm flank of the SST front. Large thermal instability of the near-surface layer strengthens temporal synoptic wind perturbations by intensifying vertical mixing, resulting in a scalar wind maximum. The vertical mixing and SF-SLP mechanisms are both at work but manifest more clearly at the synoptic time scale and in the long-term mean, respectively. The cross-frontal variations are 1.5 m s(-1) in both the scalar and vector wind speeds, representing the vertical mixing and SF-SLP effects, respectively. The results illustrate the utility of high-frequency sampling by satellite scatterometers.

Takahashi, H, Su H, Jiang JH, Luo ZJ, Xie SP, Hafner J.  2013.  Tropical water vapor variations during the 2006-2007 and 2009-2010 El Ninos: Satellite observation and GFDL AM2.1 simulation. Journal of Geophysical Research-Atmospheres. 118:8910-8920. AbstractWebsite

Water vapor measurements from Aura Microwave Limb Sounder (MLS, above 300 hPa) and Aqua Atmospheric Infrared Sounder (AIRS, below 300 hPa) are analyzed to study the variations of moisture during the 2006-2007 and 2009-2010 El Ninos. The 2006-2007 El Nino is an East Pacific (EP) El Nino, while the 2009-2010 El Nino is a Central Pacific (CP) El Nino or El Nino Modoki. Results show that these two types of El Nino events produce different patterns of water vapor anomalies over the tropical ocean, approximately resembling the cloud anomalies shown in Su and Jiang (2013). Regression of water vapor anomalies onto the Nino-3.4 SST for the A-Train period shows a clear upper tropospheric amplification of the fractional water vapor change, i.e., the ratio of the change in specific humidity to the layer-averaged specific humidity. Furthermore, tropical water vapor anomalies in different circulation regimes are examined. It is shown that the variations of water vapor during the 2006-2007 El Nino are mainly controlled by the thermodynamic component, whereas both dynamic and thermodynamic components control the water vapor anomalies during the 2009-2010 El Nino. GFDL AM2.1 model simulations of water vapor and cloud anomalies for the two El Ninos are compared with the satellite observations. In general, the model approximately reproduces the water vapor anomalies on both zonal and meridional planes but it produces too strong a cloud response in the mid- and lower troposphere. The model fails to capture the dynamic component of water vapor anomalies, particularly over the Indian Ocean.

Kosaka, Y, Xie S-P.  2016.  The tropical Pacific as a key pacemaker of the variable rates of global warming. Nature Geosci. advance online publication: Nature Publishing Group   10.1038/ngeo2770   Abstract

Global mean surface temperature change over the past 120 years resembles a rising staircase: the overall warming trend was interrupted by the mid-twentieth-century big hiatus and the warming slowdown since about 1998. The Interdecadal Pacific Oscillation has been implicated in modulations of global mean surface temperatures, but which part of the mode drives the variability in warming rates is unclear. Here we present a successful simulation of the global warming staircase since 1900 with a global ocean–atmosphere coupled model where tropical Pacific sea surface temperatures are forced to follow the observed evolution. Without prescribed tropical Pacific variability, the same model, on average, produces a continual warming trend that accelerates after the 1960s. We identify four events where the tropical Pacific decadal cooling markedly slowed down the warming trend. Matching the observed spatial and seasonal fingerprints we identify the tropical Pacific as a key pacemaker of the warming staircase, with radiative forcing driving the overall warming trend. Specifically, tropical Pacific variability amplifies the first warming epoch of the 1910s–1940s and determines the timing when the big hiatus starts and ends. Our method of removing internal variability from the observed record can be used for real-time monitoring of anthropogenic warming.

Siler, N, Kosaka Y, Xie SP, Li XC.  2017.  Tropical ocean contributions to California's surprisingly dry El Nino of 2015/16. Journal of Climate. 30:10067-10079.   10.1175/jcli-d-17-0177.1   AbstractWebsite

The major El Nino of 2015/16 brought significantly less precipitation to California than previous events of comparable strength, much to the disappointment of residents suffering through the state's fourth consecutive year of severe drought. Here, California's weak precipitation in 2015/16 relative to previous major El Nino events is investigated within a 40-member ensemble of atmosphere-only simulations run with historical sea surface temperatures (SSTs) and constant radiative forcing. The simulations reveal significant differences in both California precipitation and the large-scale atmospheric circulation between 2015/16 and previous strong El Nino events, which are similar to (albeit weaker than) the differences found in observations. Principal component analysis indicates that these ensemble-mean differences were likely related to a pattern of tropical SST variability with a strong signal in the Indian Ocean and western Pacific and a weaker signal in the eastern equatorial Pacific and subtropical North Atlantic. This SST pattern was missed by the majority of forecast models, which could partly explain their erroneous predictions of above-average precipitation in California in 2015/16.

Saji, NH, Xie SP, Yamagata T.  2006.  Tropical Indian Ocean variability in the IPCC twentieth-century climate simulations. Journal of Climate. 19:4397-4417. Abstract
n/a
Mei, W, Lien CC, Lin II, Xie SP.  2015.  Tropical cyclone-induced ocean response: A comparative study of the South China Sea and tropical Northwest Pacific*(,+). Journal of Climate. 28:5952-5968.   10.1175/jcli-d-14-00651.1   AbstractWebsite

The thermocline shoals in the South China Sea (SCS) relative to the tropical northwest Pacific Ocean (NWP), as required by geostrophic balance with the Kuroshio. The present study examines the effect of this difference in ocean state on the response of sea surface temperature (SST) and chlorophyll concentration to tropical cyclones (TCs), using both satellite-derived measurements and three-dimensional numerical simulations. In both regions, TC-produced SST cooling strongly depends on TC characteristics (including intensity as measured by the maximum surface wind speed, translation speed, and size). When subject to identical TC forcing, the SST cooling in the SCS is more than 1.5 times that in the NWP, which may partially explain weaker TC intensity on average observed in the SCS. Both a shallower mixed layer and stronger subsurface thermal stratification in the SCS contribute to this regional difference in SST cooling. The mixed layer effect dominates when TCs are weak, fast-moving, and/or small; and for strong and slow-moving TCs or strong and large TCs, both factors are equally important. In both regions, TCs tend to elevate surface chlorophyll concentration. For identical TC forcing, the surface chlorophyll increase in the SCS is around 10 times that in the NWP, a difference much stronger than that in SST cooling. This large regional difference in the surface chlorophyll response is at least partially due to a shallower nutricline and stronger vertical nutrient gradient in the SCS. The effect of regional difference in upper-ocean density stratification on the surface nutrient response is negligible. The total annual primary production increase associated with the TC passage estimated using the vertically generalized production model in the SCS is nearly 3 times that in the NWP (i.e., 6.4 +/- 0.4 x 10(12) versus 2.2 +/- 0.2 x 10(12) g C), despite the weaker TC activity in the SCS.

Li, G, Xie SP.  2014.  Tropical Biases in CMIP5 Multimodel Ensemble: The Excessive Equatorial Pacific Cold Tongue and Double ITCZ Problems. Journal of Climate. 27:1765-1780.   10.1175/jcli-d-13-00337.1   AbstractWebsite

Errors of coupled general circulation models (CGCMs) limit their utility for climate prediction and projection. Origins of and feedback for tropical biases are investigated in the historical climate simulations of 18 CGCMs from phase 5 of the Coupled Model Intercomparison Project (CMIP5), together with the available Atmospheric Model Intercomparison Project (AMIP) simulations. Based on an intermodel empirical orthogonal function (EOF) analysis of tropical Pacific precipitation, the excessive equatorial Pacific cold tongue and double intertropical convergence zone (ITCZ) stand out as the most prominent errors of the current generation of CGCMs. The comparison of CMIP-AMIP pairs enables us to identify whether a given type of errors originates from atmospheric models. The equatorial Pacific cold tongue bias is associated with deficient precipitation and surface easterly wind biases in the western half of the basin in CGCMs, but these errors are absent in atmosphere-only models, indicating that the errors arise from the interaction with the ocean via Bjerknes feedback. For the double ITCZ problem, excessive precipitation south of the equator correlates well with excessive downward solar radiation in the Southern Hemisphere (SH) midlatitudes, an error traced back to atmospheric model simulations of cloud during austral spring and summer. This extratropical forcing of the ITCZ displacements is mediated by tropical ocean-atmosphere interaction and is consistent with recent studies of ocean-atmospheric energy transport balance.