Publications

Export 7 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F [G] H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
G
Biasutti, M, Voigt A, Boos WR, Braconnot P, Hargreaves JC, Harrison SP, Kang SM, Mapes BE, Scheff J, Schumacher C, Sobel AH, Xie SP.  2018.  Global energetics and local physics as drivers of past, present and future monsoons. Nature Geoscience. 11:392-+.   10.1038/s41561-018-0137-1   AbstractWebsite

Global constraints on momentum and energy govern the variability of the rainfall belt in the intertropical convergence zone and the structure of the zonal mean tropical circulation. The continental-scale monsoon systems are also facets of a momentumand energy-constrained global circulation, but their modern and palaeo variability deviates substantially from that of the intertropical convergence zone. The mechanisms underlying deviations from expectations based on the longitudinal mean budgets are neither fully understood nor simulated accurately. We argue that a framework grounded in global constraints on energy and momentum yet encompassing the complexities of monsoon dynamics is needed to identify the causes of the mismatch between theory, models and observations, and ultimately to improve regional climate projections. In a first step towards this goal, disparate regional processes must be distilled into gross measures of energy flow in and out of continents and between the surface and the tropopause, so that monsoon dynamics may be coherently diagnosed across modern and palaeo observations and across idealized and comprehensive simulations. Accounting for zonal asymmetries in the circulation, land/ocean differences in surface fluxes, and the character of convective systems, such a monsoon framework would integrate our understanding at all relevant scales: from the fine details of how moisture and energy are lifted in the updrafts of thunderclouds, up to the global circulations.

Wang, CY, Xie SP, Kosaka Y, Liu QY, Zheng XT.  2017.  Global influence of tropical Pacific variability with implications for global warming slowdown. Journal of Climate. 30:2679-2695.   10.1175/jcli-d-15-0496.1   AbstractWebsite

The impact of internal tropical Pacific variability on global mean surface temperature (GMST) is quantified using a multimodel ensemble. A tropical Pacific index (TPI) is defined to track tropical Pacific sea surface temperature (SST) variability. The simulated GMST is highly correlated with TPI on the interannual time scale but this correlation weakens on the decadal time scale. The time-scale dependency is such that the GMST regression equation derived from the observations, which are dominated by interannual variability, would underestimate the magnitude of decadal GMST response to tropical Pacific variability. The surface air temperature response to tropical Pacific variability is strong in the tropics but weakens in the extratropics. The regression coefficient of GMST against TPI shows considerable intermodel variations, primarily because of differences in high latitudes. The results have important implications for the planned intercomparison of pacemaker experiments that force Pacific variability to follow the observed evolution. The model dependency of the GMST regression suggests that in pacemaker experiments-model performance in simulating the recent "slowdown'' in global warming-will vary substantially among models. It also highlights the need to develop observational constraints and to quantify the TPI effect on the decadal variability of GMST. Compared to GMST, the correlation between global mean tropospheric temperature and TPI is high on both interannual and decadal time scales because of a common structure in the tropical tropospheric temperature response that is upward amplified and meridionally broad.

Yan, XH, Boyer T, Trenberth K, Karl TR, Xie SP, Nieves V, Tung KK, Roemmich D.  2016.  The global warming hiatus: Slowdown or redistribution? Earths Future. 4:472-482.   10.1002/2016ef000417   AbstractWebsite

Global mean surface temperatures (GMST) exhibited a smaller rate of warming during 1998-2013, compared to the warming in the latter half of the 20th Century. Although, not a "true" hiatus in the strict definition of the word, this has been termed the "global warming hiatus" by IPCC (2013). There have been other periods that have also been defined as the "hiatus" depending on the analysis. There are a number of uncertainties and knowledge gaps regarding the "hiatus." This report reviews these issues and also posits insights from a collective set of diverse information that helps us understand what we do and do not know. One salient insight is that the GMST phenomenon is a surface characteristic that does not represent a slowdown in warming of the climate system but rather is an energy redistribution within the oceans. Improved understanding of the ocean distribution and redistribution of heat will help better monitor Earth's energy budget and its consequences. A review of recent scientific publications on the "hiatus" shows the difficulty and complexities in pinpointing the oceanic sink of the "missing heat" from the atmosphere and the upper layer of the oceans, which defines the "hiatus." Advances in "hiatus" research and outlooks (recommendations) are given in this report.

Xie, S-P, Deser C, Vecchi GA, Ma J, Teng H, Wittenberg AT.  2010.  Global Warming Pattern Formation: Sea Surface Temperature and Rainfall. Journal of Climate. 23:966-986.   10.1175/2009jcli3329.1   Abstract
n/a
Zhou, ZQ, Xie SP, Zheng XT, Liu QY, Wang H.  2014.  Global warming-induced changes in El Nino teleconnections over the North Pacific and North America. Journal of Climate. 27:9050-9064.   10.1175/jcli-d-14-00254.1   AbstractWebsite

El Nino-Southern Oscillation (ENSO) induces climate anomalies around the globe. Atmospheric general circulation model simulations are used to investigate how ENSO-induced teleconnection patterns during boreal winter might change in response to global warming in the Pacific-North American sector. As models disagree on changes in the amplitude and spatial pattern of ENSO in response to global warming, for simplicity the same sea surface temperature (SST) pattern of ENSO is prescribed before and after the climate warming. In a warmer climate, precipitation anomalies intensify and move eastward over the equatorial Pacific during El Nino because the enhanced mean SST warming reduces the barrier to deep convection in the eastern basin. Associated with the eastward shift of tropical convective anomalies, the ENSO-forced Pacific-North American (PNA) teleconnection pattern moves eastward and intensifies under the climate warming. By contrast, the PNA mode of atmospheric internal variability remains largely unchanged in pattern, suggesting the importance of tropical convection in shifting atmospheric teleconnections. As the ENSO-induced PNA pattern shifts eastward, rainfall anomalies are expected to intensify on the west coast of North America, and the El Nino-induced surface warming to expand eastward and occupy all of northern North America. The spatial pattern of the mean SST warming affects changes in ENSO teleconnections. The teleconnection changes are larger with patterned mean warming than in an idealized case where the spatially uniform warming is prescribed in the mean state. The results herein suggest that the eastward-shifted PNA pattern is a robust change to be expected in the future, independent of the uncertainty in changes of ENSO itself.