Publications

Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
2017
Ma, J, Xie SP, Xu HM.  2017.  Contributions of the North Pacific Meridional Mode to Ensemble Spread of ENSO Prediction. Journal of Climate. 30:9167-9181.   10.1175/jcli-d-17-0182.1   AbstractWebsite

Seasonal prediction of El Nino-Southern Oscillation (ENSO) employs the ensemble method, which samples the uncertainty in initial conditions. While much attention has been given to the ensemble mean, the ensemble spread limits the reliability of the forecast. Spatiotemporal coevolution of intermember anomalies of sea surface temperature (SST) and low-level winds over the Pacific is examined in ensemble hindcasts. Two types of evolution of intermember SST anomalies in the equatorial Pacific are identified. The first features an apparent southwestward propagation of the SST spread from the subtropical northeastern Pacific southeast of Hawaii to the central equatorial Pacific in boreal winter-spring, indicative of the precursor effect of the North Pacific meridional mode (NPMM) on ENSO variability. Extratropical atmospheric variability generates ensemble spread in ENSO through wind-evaporation-SST (WES) in the subtropical northeastern Pacific and then Bjerknes feedback on the equator. In the second type, ensemble spread grows in the equatorial Pacific with a weak contribution from the subtropical southeastern Pacific in summer. Thus, the extratropical influence on ENSO evolution is much stronger in the Northern Hemisphere than in the Southern Hemisphere. The growth of Nino-4 SST ensemble spread shows a strong seasonality. In hindcasts initialized in September-March, the Nino-4 SST spread grows rapidly in January-April, stabilizes in May-June, and grows again in July-September. The rapid growth of the Nino-4 SST spread in January-April is due to the arrival of NPMM, while the slowdown in May-June and rapid growth in July-September are attributable primarily to the seasonality of equatorial ocean-atmosphere interaction. NPMM contributes to the ensemble spread in equatorial Pacific SST, limiting the reliability of ENSO prediction.

Richter, I, Xie SP, Morioka Y, Doi T, Taguchi B, Behera S.  2017.  Phase locking of equatorial Atlantic variability through the seasonal migration of the ITCZ. Climate Dynamics. 48:3615-3629.   10.1007/s00382-016-3289-y   AbstractWebsite

The equatorial Atlantic is marked by significant interannual variability in sea-surface temperature (SST) that is phase-locked to late boreal spring and early summer. The role of the atmosphere in this phase locking is examined using observations, reanalysis data, and model output. The results show that equatorial zonal surface wind anomalies, which are a main driver of warm and cold events, typically start decreasing in June, despite SST and sea-level pressure gradient anomalies being at their peak during this month. This behavior is explained by the seasonal northward migration of the intertropical convergence zone (ITCZ) in early summer. The north-equatorial position of the Atlantic ITCZ contributes to the decay of wind anomalies in three ways: (1) horizontal advection associated with the cross-equatorial winds transports air masses of comparatively low zonal momentum anomalies from the southeast toward the equator. (2) The absence of deep convection leads to changes in vertical momentum transport that reduce the equatorial wind anomalies at the surface, while anomalies aloft remain relatively strong. (3) The cross-equatorial flow is associated with increased total wind speed, which increases surface drag and deposit of momentum into the ocean. Previous studies have shown that convection enhances the surface wind response to SST anomalies. The present study indicates that convection also amplifies the surface zonal wind response to sea-level pressure gradients in the western equatorial Atlantic, where SST anomalies are small. This introduces a new element into coupled air-sea interaction of the tropical Atlantic.

2016
Zheng, XT, Xie SP, Lv LH, Zhou ZQ.  2016.  Intermodel uncertainty in ENSO amplitude change tied to Pacific Ocean warming pattern. Journal of Climate. 29:7265-7279.   10.1175/jcli-d-16-0039.1   AbstractWebsite

How El Nino-Southern Oscillation (ENSO) will change under global warming affects changes in extreme events around the world. The change of ENSO amplitude is investigated based on the historical simulations and representative concentration pathway (RCP) 8.5 experiments in phase 5 of the Coupled Model Intercomparison Project (CMIP5). The projected change in ENSO amplitude is highly uncertain with large intermodel uncertainty. By using the relative sea surface temperature (SST) as a measure of convective instability, this study finds that the spatial pattern of tropical Pacific surface warming is the major source of intermodel uncertainty in ENSO amplitude change. In models with an enhanced mean warming in the eastern equatorial Pacific, the barrier to deep convection is reduced, and the intensified rainfall anomalies of ENSO amplify the wind response and hence SST variability. In models with a reduced eastern Pacific warming, conversely, ENSO amplitude decreases. Corroborating the mean SST pattern effect, intermodel uncertainty in changes of ENSO-induced rainfall variability decreases substantially in atmospheric simulations forced by a common ocean warming pattern. Thus, reducing the uncertainty in the Pacific surface warming pattern helps improve the reliability of ENSO projections. To the extent that correcting model biases favors an El Nino-like mean warming pattern, this study suggests an increase in ENSO-related SST variance likely under global warming.

2013
Du, Y, Xie SP, Yang YL, Zheng XT, Liu L, Huang G.  2013.  Indian Ocean Variability in the CMIP5 Multimodel Ensemble: The Basin Mode. Journal of Climate. 26:7240-7266.   10.1175/jcli-d-12-00678.1   AbstractWebsite

This study evaluates the simulation of the Indian Ocean Basin (IOB) mode and relevant physical processes in models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). Historical runs from 20 CMIP5 models are available for the analysis. They reproduce the IOB mode and its close relationship to El Nino-Southern Oscillation (ENSO). Half of the models capture key IOB processes: a downwelling oceanic Rossby wave in the southern tropical Indian Ocean (TIO) precedes the IOB development in boreal fall and triggers an antisymmetric wind anomaly pattern across the equator in the following spring. The anomalous wind pattern induces a second warming in the north Indian Ocean (NIO) through summer and sustains anticyclonic wind anomalies in the northwest Pacific by radiating a warm tropospheric Kelvin wave. The second warming in the NIO is indicative of ocean-atmosphere interaction in the interior TIO. More than half of the models display a double peak in NIO warming, as observed following El Nino, while the rest show only one winter peak. The intermodel diversity in the characteristics of the IOB mode seems related to the thermocline adjustment in the south TIO to ENSO-induced wind variations. Almost all the models show multidecadal variations in IOB variance, possibly modulated by ENSO.