Publications

Export 10 results:
Sort by: Author Title Type [ Year  (Asc)]
2013
Seo, H, Xie SP.  2013.  Impact of ocean warm layer thickness on the intensity of hurricane Katrina in a regional coupled model. Meteorology and Atmospheric Physics. 122:19-32.   10.1007/s00703-013-0275-3   AbstractWebsite

The effect of pre-storm subsurface thermal structure on the intensity of hurricane Katrina (2005) is examined using a regional coupled model. The Estimating Circulation and Climate of Ocean (ECCO) ocean state estimate is used to initialize the ocean component of the coupled model, and the source of deficiencies in the simulation of Katrina intensity is investigated in relation to the initial depth of 26 A degrees C isotherm (D26). The model underestimates the intensity of Katrina partly due to shallow D26 in ECCO. Sensitivity tests with various ECCO initial fields indicate that the correct relationship between intensity and D26 cannot be derived because D26 variability is underestimated in ECCO. A series of idealized experiments is carried out by modifying initial ECCO D26 to match the observed range. A more reasonable relationship between Katrina's intensity and pre-storm D26 emerges: the intensity is much more sensitive to D26 than to sea surface temperature (SST). Ocean mixed layer process plays a critical role in modulating inner-core SSTs when D26 is deep, reducing mixed layer cooling and lowering the center pressure of the Katrina. Our result lends strong support to the notion that accurate initialization of pre-storm subsurface thermal structure in prediction models is critical for a skillful forecast of intensity of Katrina and likely other intense storms.

Tomita, H, Xie SP, Tokinaga H, Kawai Y.  2013.  Cloud response to the meandering Kuroshio extension front. Journal of Climate. 26:9393-9398.   10.1175/jcli-d-13-00133.1   AbstractWebsite

A unique set of observations on board research vessel (R/V) Mirai in April 2010 captured a striking cloud hole over a cold meander of the Kuroshio Extension (KE) east of Japan as corroborated by atmospheric soundings, ceilometer, shipboard radiation data, and satellite cloud images. Distinct differences were also observed between the warm meander farther to the north and warm water south of the KE. The atmosphere is highly unstable over the warm meander, promoting a well-mixed marine atmospheric boundary layer (MABL) and a layer of solid stratocumulus clouds capped by a strong inversion. Over the warm water south of the KE, MABL deepens and is decoupled from the ocean surface. Scattered cumulus clouds develop as captured by rapid variations in ceilometer-derived cloud base. The results show that the meandering KE front affects the entire MABL and the clouds. Such atmospheric response can potentially intensify the baroclinicity in the lower atmosphere.

Wang, LY, Liu QY, Xu LX, Xie SP.  2013.  Response of mode water and Subtropical Countercurrent to greenhouse gas and aerosol forcing in the North Pacific. Journal of Ocean University of China. 12:222-229.   10.1007/s11802-013-2193-x   AbstractWebsite

The response of the North Pacific Subtropical Mode Water and Subtropical Countercurrent (STCC) to changes in greenhouse gas (GHG) and aerosol is investigated based on the 20th-century historical and single-forcing simulations with the Geophysical Fluid Dynamics Laboratory Climate Model version 3 (GFDL CM3). The aerosol effect causes sea surface temperature (SST) to decrease in the mid-latitude North Pacific, especially in the Kuroshio Extension region, during the past five decades (1950-2005), and this cooling effect exceeds the warming effect by the GHG increase. The STCC response to the GHG and aerosol forcing are opposite. In the GHG (aerosol) forcing run, the STCC decelerates (accelerates) due to the decreased (increased) mode waters in the North Pacific, resulting from a weaker (stronger) front in the mixed layer depth and decreased (increased) subduction in the mode water formation region. The aerosol effect on the SST, mode waters and STCC more than offsets the GHG effect. The response of SST in a zonal band around 40A degrees N and the STCC to the combined forcing in the historical simulation is similar to the response to the aerosol forcing.

2016
Cheng, XH, Xie SP, Du Y, Wang J, Chen X, Wang J.  2016.  Interannual-to-decadal variability and trends of sea level in the South China Sea. Climate Dynamics. 46:3113-3126.   10.1007/s00382-015-2756-1   AbstractWebsite

Interannual-to-decadal variability and trends of sea level in the South China Sea (SCS) are studied using altimetric data during 1993-2012 and reconstructed sea level data from 1950-2009. The interannual variability shows a strong seasonality. Surface wind anomalies associated with El Nio-Southern Oscillation explain the sea-level anomaly pattern in the interior SCS, while Rossby waves radiated from the eastern boundary dominate the sea-level variability in the eastern SCS. Decadal variability of sea level in the SCS follows that in the western tropical Pacific, with large variance found west of Luzon Island. Local atmospheric forcing makes a negative contribution to decadal variability in the central SCS, and Rossby waves radiated from the eastern boundary appear to be important. During 1993-2012, decadal sea level averaged in the SCS is significantly correlated with the Pacific Decadal Oscillation (PDO) (r = -0.96). The decadal variability associated with the PDO accounts for most part of sea-level trends in the SCS in the last two decades.

2017
Tokinaga, H, Xie SP, Mukougawa H.  2017.  Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability. Proceedings of the National Academy of Sciences of the United States of America. 114:6227-6232.   10.1073/pnas.1615880114   AbstractWebsite

With amplified warming and record sea ice loss, the Arctic is the canary of global warming. The historical Arctic warming is poorly understood, limiting our confidence in model projections. Specifically, Arctic surface air temperature increased rapidly over the early 20th century, at rates comparable to those of recent decades despite much weaker greenhouse gas forcing. Here, we show that the concurrent phase shift of Pacific and Atlantic interdecadal variability modes is the major driver for the rapid early 20th-century Arctic warming. Atmospheric model simulations successfully reproduce the early Arctic warming when the interdecadal variability of sea surface temperature (SST) is properly prescribed. The early 20th-century Arctic warming is associated with positive SST anomalies over the tropical and North Atlantic and a Pacific SST pattern reminiscent of the positive phase of the Pacific decadal oscillation. Atmospheric circulation changes are important for the early 20th-century Arctic warming. The equatorial Pacific warming deepens the Aleutian low, advecting warm air into the North American Arctic. The extratropical North Atlantic and North Pacific SST warming strengthens surface westerly winds over northern Eurasia, intensifying the warming there. Coupled ocean-atmosphere simulations support the constructive intensification of Arctic warming by a concurrent, negative-to-positive phase shift of the Pacific and Atlantic interdecadal modes. Our results aid attributing the historical Arctic warming and thereby constrain the amplified warming projected for this important region.

Zhou, WY, Xie SP.  2017.  Intermodel spread around the Kuroshio-Oyashio Extension region in coupled GCMs caused by meridional variation of the westerly jet from atmospheric GCMs. Journal of Climate. 30:4589-4599.   10.1175/jcli-d-16-0831.1   AbstractWebsite

The Kuroshio-Oyashio Extension (KOE) is a region of energetic oceanic mesoscale eddies and vigorous air-sea interaction that can influence climate variability over the northwest Pacific and East Asia. General circulation models (GCMs) exhibit considerable differences in their simulated climatology around the KOE region. Specifically, there are substantial intermodel spreads in both sea surface temperature (SST) and the upper-level westerly jet. In this study, the cause for such large spreads is studied by analyzing 21 pairs of coupled and atmospheric GCMs from phase 5 of the Coupled Model Intercomparison Project (CMIP5). It is found that the intermodel spread of the climatological westerly jet among coupled GCMs is largely inherited from their atmospheric models rather than being due to their SST difference as previously thought. An anomalous equatorward shift in the simulated westerly jet can give rise to a cold SST bias around the KOE region as follows. The equatorward jet shift induces cyclonic surface wind anomalies over the North Pacific, which not only enhance the turbulent heat fluxes out of the ocean south of the KOE but also drive an anomalous cyclonic ocean circulation that brings colder (warmer) water into the north (south) of the KOE. The KOE region is consequently cooled due to both the atmospheric and oceanic effects. Such processes are demonstrated through idealized perturbation experiments using an ocean model. The results herein point to reducing atmospheric model errors in the westerly jet as the way forward to improve the coupled simulations around the KOE region.

Kamae, Y, Mei W, Xie SP.  2017.  Climatological relationship between warm season atmospheric rivers and heavy rainfall over East Asia. Journal of the Meteorological Society of Japan. 95:411-431.   10.2151/jmsj.2017-027   AbstractWebsite

Eddy transport of atmospheric,ater vapor from the tropics is important for rainfall and related natural disasters in the middle latitudes. Atmospheric rivers (ARs), intense moisture plumes that are typically associated with extratropical cyclones, often produce heavy precipitation upon encountering topography on the west coasts of mid-latitude North America and Europe. ARs also occur over the northwestern Pacific and sometimes cause floods and landslides over East Asia, but the climatological relationship between ARs and heavy rainfall in this region remains unclear. Here we evaluate the contribution of ARs to the hydrological cycle over East Asia using high-resolution daily rainfall observations and an atmospheric reanalysis during 1958-2007. Despite their low occurrence, ARs account for 14-44 % of the total rainfall and 20-90 % of extreme heavy-rainfall events during spring, summer, and autumn. AR-related extreme rainfall is especially pronounced over western-to-southeastern slopes of terrains over the Korean Peninsula and Japan, owing to strong orographic effects and a stable direction of low-level moisture flows. A strong relationship between warm-season AR heavy rainfall and preceding-winter El Nino is identified since the 1970s, suggesting the potential of predicting heavy-rainfall risk over Korea and Japan at seasonal leads.

2018
Zhou, ZQ, Xie SP, Zhang GJ, Zhou WY.  2018.  Evaluating AMIP Skill in Simulating Interannual Variability over the Indo-Western Pacific. Journal of Climate. 31:2253-2265.   10.1175/jcli-d-17-0123.1   AbstractWebsite

Local correlation between sea surface temperature (SST) and rainfall is weak or even negative in summer over the Indo-western Pacific warm pool, a fact often taken as indicative of weak ocean feedback on the atmosphere. An Atmospheric Model Intercomparison Project (AMIP) simulation forced by monthly varying SSTs derived from a parallel coupled general circulation model (CGCM) run is used to evaluate AMIP skills in simulating interannual variability of rainfall. Local correlation of rainfall variability between AMIP and CGCMsimulations is used as a direct metric of AMIP skill. This "perfect model'' approach sidesteps the issue of model biases that complicates the traditional skill metric based on the correlation between AMIP and observations. Despite weak local SST-rainfall correlation, the AMIP-CGCM rainfall correlation exceeds a 95% significance level over most of the Indo-western Pacific warm pool, indicating the importance of remote (e.g., El Nino in the equatorial Pacific) rather than local SST forcing. Indeed, the AMIP successfully reproduces large-scale modes of rainfall variability over the Indo-western Pacific warm pool. Compared to the northwest Pacific east of the Philippines, the AMIP-CGCMrainfall correlation is low from the Bay of Bengal through the South China Sea, limited by internal variability of the atmosphere that is damped in CGCM by negative feedback from the ocean. Implications for evaluating AMIP skill in simulating observations are discussed.

Zhang, Y, Xie SP, Kosaka Y, Yang JC.  2018.  Pacific decadal oscillation: Tropical Pacific forcing versus internal variability. Journal of Climate. 31:8265-8279.   10.1175/jcli-d-18-0164.1   AbstractWebsite

The Pacific decadal oscillation (PDO) is the leading mode of sea surface temperature (SST) variability over the North Pacific (north of 20 degrees N). Its South Pacific counterpart (south of 20 degrees S) is the South Pacific decadal oscillation (SPDO). The effects of tropical eastern Pacific (TEP) SST forcing and internal atmospheric variability are investigated for both the PDO and SPDO using a 10-member ensemble tropical Pacific pacemaker experiment. Each member is forced by the historical radiative forcing and observed SST anomalies in the TEP region. Outside the TEP region, the ocean and atmosphere are fully coupled and freely evolve. The TEP-forced PDO (54% variance) and SPDO (46% variance) are correlated in time and exhibit a symmetric structure about the equator, driven by the Pacific-North American (PNA) and Pacific-South American teleconnections, respectively. The internal PDO resembles the TEP-forced component but is related to internal Aleutian low (AL) variability associated with the Northern Hemisphere annular mode and PNA pattern. The internal variability is locally enhanced by barotropic energy conversion in the westerly jet exit region around the Aleutians. By contrast, barotropic energy conversion is weak associated with the internal SPDO, resulting in weak geographical preference of sea level pressure variability. Therefore, the internal SPDO differs from the TEP-forced component, featuring SST anomalies along similar to 60 degrees S in association with the Southern Hemisphere annular mode. The limitations on isolating the internal component from observations are discussed. Specifically, internal PDO variability appears to contribute significantly to the North Pacific regime shift in the 1940s.

Wang, CY, Xie SP, Kosaka Y.  2018.  Indo-Western Pacific Climate Variability: ENSO Forcing and Internal Dynamics in a Tropical Pacific Pacemaker Simulation. Journal of Climate. 31:10123-10139.   10.1175/jcli-d-18-0203.1   AbstractWebsite

El Nino-Southern Oscillation (ENSO) peaks in boreal winter but its impact on Indo-western Pacific climate persists for another two seasons. Key ocean-atmosphere interaction processes for the ENSO effect are investigated using the Pacific Ocean-Global Atmosphere (POGA) experiment with a coupled general circulation model, where tropical Pacific sea surface temperature (SST) anomalies are restored to follow observations while the atmosphere and oceans are fully coupled elsewhere. The POGA shows skills in simulating the ENSO-forced warming of the tropical Indian Ocean and an anomalous anticyclonic circulation pattern over the northwestern tropical Pacific in the post-El Nino spring and summer. The 10-member POGA ensemble allows decomposing Indo-western Pacific variability into the ENSO forced and ENSO-unrelated (internal) components. Internal variability is comparable to the ENSO forcing in magnitude and independent of ENSO amplitude and phase. Random internal variability causes apparent decadal modulations of ENSO correlations over the Indo-western Pacific, which are high during epochs of high ENSO variance. This is broadly consistent with instrumental observations over the past 130 years as documented in recent studies. Internal variability features a sea level pressure pattern that extends into the north Indian Ocean and is associated with coherent SST anomalies from the Arabian Sea to the western Pacific, suggestive of ocean-atmosphere coupling.