Export 32 results:
Sort by: Author Title Type [ Year  (Desc)]
Xie, SP, Peng QH, Kamae Y, Zheng XT, Tokinaga H, Wang DX.  2018.  Eastern Pacific ITCZ Dipole and ENSO Diversity. Journal of Climate. 31:4449-4462.   10.1175/jcli-d-17-0905.1   AbstractWebsite

The eastern tropical Pacific features strong climatic asymmetry across the equator, with the intertropical convergence zone (ITCZ) displaced north of the equator most of time. In February- April (FMA), the seasonal warming in the Southern Hemisphere and cooling in the Northern Hemisphere weaken the climatic asymmetry, and a double ITCZ appears with a zonal rainband on either side of the equator. Results from an analysis of precipitation variability reveal that the relative strength between the northern and southern ITCZ varies from one year to another and this meridional seesaw results from ocean-atmosphere coupling. Surprisingly this meridional seesaw is triggered by an El Nino-Southern Oscillation (ENSO) of moderate amplitudes. Although ENSO is originally symmetric about the equator, the asymmetry in the mean climate in the preceding season introduces asymmetric perturbations, which are then preferentially amplified by coupled ocean-atmosphere feedback in FMA when deep convection is sensitive to small changes in cross-equatorial gradient of sea surface temperature. This study shows that moderate ENSO follows a distinct decay trajectory in FMA and southeasterly cross-equatorial wind anomalies cause moderate El Nino to dissipate rapidly as southeasterly cross-equatorial wind anomalies intensify ocean upwelling south of the equator. In contrast, extreme El Nino remains strong through FMA as enhanced deep convection causes westerly wind anomalies to intrude and suppress ocean upwelling in the eastern equatorial Pacific.

Liu, W, Xie SP.  2018.  An ocean view of the global surface warming hiatus. Oceanography. 31:72-79.   10.5670/oceanog.2018.217   AbstractWebsite

The rate of global mean surface temperature increase slowed during 1998-2012. We review oceanic changes during this global warming hiatus from different but related perspectives. In one perspective, we explore the physical mechanisms for sea surface temperature patterns and highlight the role of natural variability, particularly the Interdecadal Pacific Oscillation (IPO) and the Atlantic Multidecadal Oscillation (AMO) that both have chaotic/random phases. In the other perspective, we investigate how the hiatus relates to changes in energy fluxes at the top of the atmosphere and to the three-dimensional distribution of ocean heat content change on decadal timescales. We find that the recent surface warming hiatus is associated with a transition of the IPO from a positive to negative phase and with heat redistribution between the tropical Pacific and Indian Oceans. The AMO has shifted to a positive phase since the late 1990s, inducing a La Nina-type response over the tropical Pacific via a tropic-wide teleconnection, contributing to the global warming hiatus.

Xu, LX, Xie SP, Liu QY, Liu C, Li PL, Lin XP.  2017.  Evolution of the North Pacific subtropical mode water in anticyclonic eddies. Journal of Geophysical Research-Oceans. 122:10118-10130.   10.1002/2017jc013450   AbstractWebsite

Anticyclonic eddies (AEs) trap and transport the North Pacific subtropical mode water (STMW), but the evolution of the STMW trapped in AEs has not been fully studied due to the lack of eddy-tracking subsurface observations. Here we analyze profiles from special-designed Argo floats that follow two STMW-trapping AEs for more than a year. The enhanced daily sampling by these Argo floats swirling around the eddies enables an unprecedented investigation into the structure and evolution of the trapped STMW. In the AEs, the upper (lower) thermocline domes up ( concaves downward), and this lens-shaped double thermocline encompasses the thick STMW within the eddy core. The lighter STMW (25.0 similar to 25.2 sigma(theta)) trapped in AEs dissipates quickly after the formation in winter because of the deepening seasonal thermocline, but the denser STMW (25.2 similar to 25.4 sigma(theta)) remains largely unchanged except when the AE passes across the Izu Ridge. The enhanced diapycnal mixing over the ridge weakens the denser STMW appreciably. While many AEs decay upon hitting the ridge, some pass through a bathymetric gap between the Hachijojima and Bonin Islands, forming a cross- ridge pathway for STMW transport. By contrast, the North Pacific Intermediate Water (NPIW) underneath is deeper than the eddy trapping depth (600 m), and hence left behind east of the Izu Ridge. In Argo climatology, the shallow STMW (< 400 m) intrudes through the gap westward because of the eddy transport, while the NPIW (800 m) is blocked by the Izu Ridge.

Hu, KM, Xie SP, Huang G.  2017.  Orographically Anchored El Nino Effect on Summer Rainfall in Central China. Journal of Climate. 30:10037-10045.   10.1175/jcli-d-17-0312.1   AbstractWebsite

Year-to-year variations in summer precipitation have great socioeconomic impacts on China. Historical rainfall variability over China is investigated using a newly released high-resolution dataset. The results reveal summer-mean rainfall anomalies associated with ENSO that are anchored by mountains in central China east of the Tibetan Plateau. These orographically anchored hot spots of ENSO influence are poorly represented in coarse-resolution datasets so far in use. In post-El Nino summers, an anomalous anticyclone forms over the tropical northwest Pacific, and the anomalous southwesterlies on the northwest flank cause rainfall to increase in mountainous central China through orographic lift. At upper levels, the winds induce additional adiabatic updraft by increasing the eastward advection of warm air from Tibet. In post-El Nino summers, large-scale moisture convergence induces rainfall anomalies elsewhere over flat eastern China, which move northward from June to August and amount to little in the seasonal mean.

Siler, N, Kosaka Y, Xie SP, Li XC.  2017.  Tropical ocean contributions to California's surprisingly dry El Nino of 2015/16. Journal of Climate. 30:10067-10079.   10.1175/jcli-d-17-0177.1   AbstractWebsite

The major El Nino of 2015/16 brought significantly less precipitation to California than previous events of comparable strength, much to the disappointment of residents suffering through the state's fourth consecutive year of severe drought. Here, California's weak precipitation in 2015/16 relative to previous major El Nino events is investigated within a 40-member ensemble of atmosphere-only simulations run with historical sea surface temperatures (SSTs) and constant radiative forcing. The simulations reveal significant differences in both California precipitation and the large-scale atmospheric circulation between 2015/16 and previous strong El Nino events, which are similar to (albeit weaker than) the differences found in observations. Principal component analysis indicates that these ensemble-mean differences were likely related to a pattern of tropical SST variability with a strong signal in the Indian Ocean and western Pacific and a weaker signal in the eastern equatorial Pacific and subtropical North Atlantic. This SST pattern was missed by the majority of forecast models, which could partly explain their erroneous predictions of above-average precipitation in California in 2015/16.

Merrifield, A, Lehner F, Xie SP, Deser C.  2017.  Removing Circulation Effects to Assess Central US Land-Atmosphere Interactions in the CESM Large Ensemble. Geophysical Research Letters. 44:9938-9946.   10.1002/2017gl074831   AbstractWebsite

Interannual variability of summer surface air temperature (SAT) in the central United States (U.S.) is influenced by atmospheric circulation and land surface feedbacks. Here a method of dynamical adjustment is used to remove the effects of circulation on summer SAT variability over North America in the Community Earth System Model Large Ensemble. The residual SAT variability is shown to reflect thermodynamic feedbacks associated with land surface conditions. In particular, the central U.S. is a hot spot of land-atmosphere interaction, with residual SAT accounting for more than half of the total SAT variability. Within the hot spot, residual SAT anomalies show higher month-to-month persistence through the warm season and a redder spectrum than dynamically induced SAT anomalies. Residual SAT variability in this region is also shown to be related to preseason soil moisture conditions, surface flux variability, and local atmospheric pressure anomalies.

Li, G, Xie SP, He C, Chen ZS.  2017.  Western Pacific emergent constraint lowers projected increase in Indian summer monsoon rainfall. Nature Climate Change. 7:708-+.   10.1038/nclimate3387   AbstractWebsite

The agrarian-based socioeconomic livelihood of densely populated South Asian countries is vulnerable to modest changes in Indian summer monsoon (ISM) rainfall(1-3). How the ISM rainfall will evolve is a question of broad scientific and socioeconomic importance(3-9). In response to increased greenhouse gas (GHG) forcing, climate models commonly project an increase in ISM rainfall(4-9). This wetter ISM projection, however, does not consider large model errors in both the mean state and ocean warming pattern(9-11). Here we identify a relationship between biases in simulated present climate and future ISM projections in a multi-model ensemble: models with excessive present-day precipitation over the tropical western Pacific tend to project a larger increase in ISM rainfall under GHG forcing because of too strong a negative cloud-radiation feedback on sea surface temperature. The excessive negative feedback suppresses the local ocean surface warming, strengthening ISM rainfall projections via atmospheric circulation. We calibrate the ISM rainfall projections using this 'present-future relationship' and observed western Pacific precipitation. The correction reduces by about 50% of the projected rainfall increase over the broad ISM region. Our study identifies an improved simulation of western Pacific convection as a priority for reliable ISM projections.

Liu, C, Xie SP, Li PL, Xu LX, Gao WD.  2017.  Climatology and decadal variations in multicore structure of the North Pacific subtropical mode water. Journal of Geophysical Research-Oceans. 122:7506-7520.   10.1002/2017jc013071   AbstractWebsite

The pycnostad of the North Pacific subtropical mode water (STMW) often displays multiple vertical minima in the potential vorticity profile. Argo profile data from 2004 to 2015 are used to investigate interannual to decadal variations of the multicore structure. Climatologically, about 24% pycostads of STMW have multicore structure, and most of them distribute in the region west of 150 degrees E. STMW cores are classified into three submodes-the cold, middle, and warm ones with potential temperatures of 16.0-17 degrees C, 17-18 degrees C, and 18-19.5 degrees C, respectively. The Kuroshio Extension (KE) varies between stable and unstable states. The unstable KE with large meanders increases the subsurface stratification and shoals the winter mixed layer east of 150 degrees E with warmer temperatures. There, the dominant STMW type varies from the cold single type in stable KE years (making up 72% of the profiles with STMW) to the middle single one (53%) in unstable years. The variation of the dominant STMW type in the region east of 150 degrees E subsequently affects the multicore structure of STMW west of 150 degrees E. In a broad region between 130 degrees E and 180 degrees E, profiles with STMW are fewer in unstable years but the proportion of multicore profiles increases among STMW profiles. This might be due to the split recirculation gyre with a chaotic KE.

Hwang, YT, Xie SP, Deser C, Kang SM.  2017.  Connecting tropical climate change with Southern Ocean heat uptake. Geophysical Research Letters. 44:9449-9457.   10.1002/2017gl074972   AbstractWebsite

Under increasing greenhouse gas forcing, climate models project tropical warming that is greater in the Northern than the Southern Hemisphere, accompanied by a reduction in the northeast trade winds and a strengthening of the southeast trades. While the ocean-atmosphere coupling indicates a positive feedback, what triggers the coupled asymmetry and favors greater warming in the northern tropics remains unclear. Far away from the tropics, the Southern Ocean (SO) has been identified as the major region of ocean heat uptake. Beyond its local effect on the magnitude of sea surface warming, we show by idealized modeling experiments in a coupled slab ocean configuration that enhanced SO heat uptake has a profound global impact. This SO-to-tropics connection is consistent with southward atmospheric energy transport across the equator. Enhanced SO heat uptake results in a zonally asymmetric La-Nina-like pattern of sea surface temperature change that not only affects tropical precipitation but also has influences on the Asian and North American monsoons.

Tokinaga, H, Xie SP, Mukougawa H.  2017.  Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability. Proceedings of the National Academy of Sciences of the United States of America. 114:6227-6232.   10.1073/pnas.1615880114   AbstractWebsite

With amplified warming and record sea ice loss, the Arctic is the canary of global warming. The historical Arctic warming is poorly understood, limiting our confidence in model projections. Specifically, Arctic surface air temperature increased rapidly over the early 20th century, at rates comparable to those of recent decades despite much weaker greenhouse gas forcing. Here, we show that the concurrent phase shift of Pacific and Atlantic interdecadal variability modes is the major driver for the rapid early 20th-century Arctic warming. Atmospheric model simulations successfully reproduce the early Arctic warming when the interdecadal variability of sea surface temperature (SST) is properly prescribed. The early 20th-century Arctic warming is associated with positive SST anomalies over the tropical and North Atlantic and a Pacific SST pattern reminiscent of the positive phase of the Pacific decadal oscillation. Atmospheric circulation changes are important for the early 20th-century Arctic warming. The equatorial Pacific warming deepens the Aleutian low, advecting warm air into the North American Arctic. The extratropical North Atlantic and North Pacific SST warming strengthens surface westerly winds over northern Eurasia, intensifying the warming there. Coupled ocean-atmosphere simulations support the constructive intensification of Arctic warming by a concurrent, negative-to-positive phase shift of the Pacific and Atlantic interdecadal modes. Our results aid attributing the historical Arctic warming and thereby constrain the amplified warming projected for this important region.

Zhou, WY, Xie SP.  2017.  Intermodel spread around the Kuroshio-Oyashio Extension region in coupled GCMs caused by meridional variation of the westerly jet from atmospheric GCMs. Journal of Climate. 30:4589-4599.   10.1175/jcli-d-16-0831.1   AbstractWebsite

The Kuroshio-Oyashio Extension (KOE) is a region of energetic oceanic mesoscale eddies and vigorous air-sea interaction that can influence climate variability over the northwest Pacific and East Asia. General circulation models (GCMs) exhibit considerable differences in their simulated climatology around the KOE region. Specifically, there are substantial intermodel spreads in both sea surface temperature (SST) and the upper-level westerly jet. In this study, the cause for such large spreads is studied by analyzing 21 pairs of coupled and atmospheric GCMs from phase 5 of the Coupled Model Intercomparison Project (CMIP5). It is found that the intermodel spread of the climatological westerly jet among coupled GCMs is largely inherited from their atmospheric models rather than being due to their SST difference as previously thought. An anomalous equatorward shift in the simulated westerly jet can give rise to a cold SST bias around the KOE region as follows. The equatorward jet shift induces cyclonic surface wind anomalies over the North Pacific, which not only enhance the turbulent heat fluxes out of the ocean south of the KOE but also drive an anomalous cyclonic ocean circulation that brings colder (warmer) water into the north (south) of the KOE. The KOE region is consequently cooled due to both the atmospheric and oceanic effects. Such processes are demonstrated through idealized perturbation experiments using an ocean model. The results herein point to reducing atmospheric model errors in the westerly jet as the way forward to improve the coupled simulations around the KOE region.

Richter, I, Xie SP, Morioka Y, Doi T, Taguchi B, Behera S.  2017.  Phase locking of equatorial Atlantic variability through the seasonal migration of the ITCZ. Climate Dynamics. 48:3615-3629.   10.1007/s00382-016-3289-y   AbstractWebsite

The equatorial Atlantic is marked by significant interannual variability in sea-surface temperature (SST) that is phase-locked to late boreal spring and early summer. The role of the atmosphere in this phase locking is examined using observations, reanalysis data, and model output. The results show that equatorial zonal surface wind anomalies, which are a main driver of warm and cold events, typically start decreasing in June, despite SST and sea-level pressure gradient anomalies being at their peak during this month. This behavior is explained by the seasonal northward migration of the intertropical convergence zone (ITCZ) in early summer. The north-equatorial position of the Atlantic ITCZ contributes to the decay of wind anomalies in three ways: (1) horizontal advection associated with the cross-equatorial winds transports air masses of comparatively low zonal momentum anomalies from the southeast toward the equator. (2) The absence of deep convection leads to changes in vertical momentum transport that reduce the equatorial wind anomalies at the surface, while anomalies aloft remain relatively strong. (3) The cross-equatorial flow is associated with increased total wind speed, which increases surface drag and deposit of momentum into the ocean. Previous studies have shown that convection enhances the surface wind response to SST anomalies. The present study indicates that convection also amplifies the surface zonal wind response to sea-level pressure gradients in the western equatorial Atlantic, where SST anomalies are small. This introduces a new element into coupled air-sea interaction of the tropical Atlantic.

Li, XC, Xie SP, Gille ST, Yoo C.  2016.  Atlantic-induced pan-tropical climate change over the past three decades. Nature Climate Change. 6:275-+.   10.1038/nclimate2840   AbstractWebsite

During the past three decades, tropical sea surface temperature (SST) has shown dipole-like trends, with warming over the tropical Atlantic and Indo-western Pacific but cooling over the eastern Pacific. Competing hypotheses relate this cooling, identified as a driver of the global warming hiatus(1,2), to the warming trends in either the Atlantic(3,4) or Indian Ocean(5). However, the mechanisms, the relative importance and the interactions between these teleconnections remain unclear. Using a state-of-the-art climate model, we show that the Atlantic plays a key role in initiating the tropical-wide teleconnection, and the Atlantic-induced anomalies contribute similar to 55-75% of the tropical SST and circulation changes during the satellite era. The Atlantic warming drives easterly wind anomalies over the Indo-western Pacific as Kelvin waves and westerly anomalies over the eastern Pacific as Rossby waves. The wind changes induce an Indo-western Pacific warming through the wind-evaporation-SST effect(6,7), and this warming intensifies the La Nina-type response in the tropical Pacific by enhancing the easterly trade winds and through the Bjerknes ocean dynamical processes(8). The teleconnection develops into a tropical-wide SST dipole pattern. This mechanism, supported by observations and a hierarchy of climate models, reveals that the tropical ocean basins are more tightly connected than previously thought.

Liu, W, Xie SP, Lu J.  2016.  Tracking ocean heat uptake during the surface warming hiatus. Nature Communications. 7   10.1038/ncomms10926   AbstractWebsite

Ocean heat uptake is observed to penetrate deep into the Atlantic and Southern Oceans during the recent hiatus of global warming. Here we show that the deep heat penetration in these two basins is not unique to the hiatus but is characteristic of anthropogenic warming and merely reflects the depth of the mean meridional overturning circulation in the basin. We find, however, that heat redistribution in the upper 350m between the Pacific and Indian Oceans is closely tied to the surface warming hiatus. The Indian Ocean shows an anomalous warming below 50m during hiatus events due to an enhanced heat transport by the Indonesian throughflow in response to the intensified trade winds in the equatorial Pacific. Thus, the Pacific and Indian Oceans are the key regions to track ocean heat uptake during the surface warming hiatus.

Kwon, EY, Deutsch C, Xie SP, Schmidtko S, Cho YK.  2016.  The North Pacific Oxygen uptake rates over the past half century. Journal of Climate. 29:61-76.   10.1175/jcli-d-14-00157.1   AbstractWebsite

The transport of dissolved oxygen (O-2) from the surface ocean into the interior is a critical process sustaining aerobic life in mesopelagic ecosystems, but its rates and sensitivity to climate variations are poorly understood. Using a circulation model constrained to historical variability by assimilation of observations, the study shows that the North Pacific thermocline effectively takes up O-2 primarily by expanding the area through which O-2-rich mixed layer water is detrained into the thermocline. The outcrop area during the critical winter season varies in concert with the Pacific decadal oscillation (PDO). When the central North Pacific Ocean is in a cold phase, the winter outcrop window for the central mode water class (CMW; a neutral density range of = 25.6-26.6) expands southward, allowing more O-2-rich surface water to enter the ocean's interior. An increase in volume flux of water to the CMW density class is partly compensated by a reduced supply to the shallower densities of subtropical mode water ( = 24.0-25.5). The thermocline has become better oxygenated since the 1980s partly because of strong O-2 uptake. Positive O-2 anomalies appear first near the outcrop and subsequently downstream in the subtropical gyre. In contrast to the O-2 variations within the ventilated thermocline, observed O-2 in intermediate water (density range of = 26.7-27.2) shows a declining trend over the past half century, a trend not explained by the open ocean water mass formation rate.

Wang, GH, Xie SP, Huang RX, Chen CL.  2015.  Robust warming pattern of global subtropical oceans and its mechanism. Journal of Climate. 28:8574-8584.   10.1175/jcli-d-14-00809.1   AbstractWebsite

The subsurface ocean response to anthropogenic climate forcing remains poorly characterized. From the Coupled Model Intercomparison Project (CMIP), a robust response of the lower thermocline is identified, where the warming is considerably weaker in the subtropics than in the tropics and high latitudes. The lower thermocline change is inversely proportional to the thermocline depth in the present climatology. Ocean general circulation model (OGCM) experiments show that sea surface warming is the dominant forcing for the subtropical gyre change in contrast to natural variability for which wind dominates, and the ocean response is insensitive to the spatial pattern of surface warming. An analysis based on a ventilated thermocline model shows that the pattern of the lower thermocline change can be interpreted in terms of the dynamic response to the strengthened stratification and downward heat mixing. Consequently, the subtropical gyres become intensified at the surface but weakened in the lower thermcline, consistent with results from CMIP experiments.

Yang, Y, Xie SP, Wu LX, Kosaka Y, Lau NC, Vecchi GA.  2015.  Seasonality and predictability of the Indian Ocean Dipole Mode: ENSO forcing and internal variability. Journal of Climate. 28:8021-8036.   10.1175/jcli-d-15-0078.1   AbstractWebsite

This study evaluates the relative contributions to the Indian Ocean dipole (IOD) mode of interannual variability from the El Nino-Southern Oscillation (ENSO) forcing and ocean-atmosphere feedbacks internal to the Indian Ocean. The ENSO forcing and internal variability is extracted by conducting a 10-member coupled simulation for 1950-2012 where sea surface temperature (SST) is restored to the observed anomalies over the tropical Pacific but interactive with the atmosphere over the rest of the World Ocean. In these experiments, the ensemble mean is due to ENSO forcing and the intermember difference arises from internal variability of the climate system independent of ENSO. These elements contribute one-third and two-thirds of the total IOD variance, respectively. Both types of IOD variability develop into an east-west dipole pattern because of Bjerknes feedback and peak in September-November. The ENSO forced and internal IOD modes differ in several important ways. The forced IOD mode develops in August with a broad meridional pattern and eventually evolves into the Indian Ocean basin mode, while the internal IOD mode grows earlier in June, is more confined to the equator, and decays rapidly after October. The internal IOD mode is more skewed than the ENSO forced response. The destructive interference of ENSO forcing and internal variability can explain early terminating IOD events, referred to as IOD-like perturbations that fail to grow during boreal summer. The results have implications for predictability. Internal variability, as represented by preseason sea surface height anomalies off Sumatra, contributes to predictability considerably. Including this indicator of internal variability, together with ENSO, improves the predictability of IOD.

Amaya, DJ, Xie SP, Miller AJ, McPhaden MJ.  2015.  Seasonality of tropical Pacific decadal trends associated with the 21st century global warming hiatus. Journal of Geophysical Research-Oceans. 120:6782-6798.   10.1002/2015jc010906   AbstractWebsite

Equatorial Pacific changes during the transition from a nonhiatus period (pre-1999) to the present global warming hiatus period (post-1999) are identified using a combination of reanalysis and observed data sets. Results show increased surface wind forcing has excited significant changes in wind-driven circulation. Over the last two decades, the core of the Equatorial Undercurrent intensified at a rate of 6.9 cm s(-1) decade(-1). Similarly, equatorial upwelling associated with the shallow meridional overturning circulation increased at a rate of 2.0 x 10(-4) cm s(-1) decade(-1) in the central Pacific. Further, a seasonal dependence is identified in the sea surface temperature trends and in subsurface dynamics. Seasonal variations are evident in reversals of equatorial surface flow trends, changes in subsurface circulation, and seasonal deepening/shoaling of the thermocline. Anomalous westward surface flow drives cold-water zonal advection from November to February, leading to surface cooling from December through May. Conversely, eastward surface current anomalies in June-July drive warm-water zonal advection producing surface warming from July to November. An improved dynamical understanding of how the tropical Pacific Ocean responds during transitions into hiatus events, including its seasonal structure, may help to improve future predictability of decadal climate variations.

Mei, W, Lien CC, Lin II, Xie SP.  2015.  Tropical cyclone-induced ocean response: A comparative study of the South China Sea and tropical Northwest Pacific*(,+). Journal of Climate. 28:5952-5968.   10.1175/jcli-d-14-00651.1   AbstractWebsite

The thermocline shoals in the South China Sea (SCS) relative to the tropical northwest Pacific Ocean (NWP), as required by geostrophic balance with the Kuroshio. The present study examines the effect of this difference in ocean state on the response of sea surface temperature (SST) and chlorophyll concentration to tropical cyclones (TCs), using both satellite-derived measurements and three-dimensional numerical simulations. In both regions, TC-produced SST cooling strongly depends on TC characteristics (including intensity as measured by the maximum surface wind speed, translation speed, and size). When subject to identical TC forcing, the SST cooling in the SCS is more than 1.5 times that in the NWP, which may partially explain weaker TC intensity on average observed in the SCS. Both a shallower mixed layer and stronger subsurface thermal stratification in the SCS contribute to this regional difference in SST cooling. The mixed layer effect dominates when TCs are weak, fast-moving, and/or small; and for strong and slow-moving TCs or strong and large TCs, both factors are equally important. In both regions, TCs tend to elevate surface chlorophyll concentration. For identical TC forcing, the surface chlorophyll increase in the SCS is around 10 times that in the NWP, a difference much stronger than that in SST cooling. This large regional difference in the surface chlorophyll response is at least partially due to a shallower nutricline and stronger vertical nutrient gradient in the SCS. The effect of regional difference in upper-ocean density stratification on the surface nutrient response is negligible. The total annual primary production increase associated with the TC passage estimated using the vertically generalized production model in the SCS is nearly 3 times that in the NWP (i.e., 6.4 +/- 0.4 x 10(12) versus 2.2 +/- 0.2 x 10(12) g C), despite the weaker TC activity in the SCS.

Qu, X, Huang G, Hu KM, Xie SP, Du Y, Zheng XT, Liu L.  2015.  Equatorward shift of the South Asian high in response to anthropogenic forcing. Theoretical and Applied Climatology. 119:113-122.   10.1007/s00704-014-1095-1   AbstractWebsite

The South Asian high (SAH) is a huge anticyclone in the upper troposphere. It influences the climate and the distribution of trace constituents and pollutants. The present study documents the change in the SAH and precipitation under global warming, as well as the possible link between the changes, based on 17 Coupled Model Intercomparison Project Phase 5 (CMIP5) model simulations. The CMIP5 historical simulation reproduces reasonably the tropospheric circulation (including the SAH), precipitation, and moisture. Under global warming, more than 75 % of the CMIP5 models project a southward shift of the SAH. The southward shift is more significant in the models with stronger anticyclonic circulation in the south part of the climatological SAH. The precipitation response displays a contrasting feature: negative over the southeastern equatorial Indian Ocean (IO) and positive over the tropical northern IO, the Bay of Bengal, and the equatorial western Pacific. The results of a linear baroclinic model (LBM) show that the regional rainfall changes over the Bay of Bengal and the equatorial western Pacific have a main contribution to the southward shift of the SAH. In addition, the precipitation and the surface wind responses over the Indo-Pacific region are well coupled. On one hand, the surface wind anomaly affects the rainfall response through altering the SST and moisture. On the other hand, the condensational heating released by regional rainfall changes sustains the surface wind response.

Mei, W, Xie SP, Zhao M, Wang YQ.  2015.  Forced and internal vriability of tropical cyclone track density in the Western North Pacific. Journal of Climate. 28:143-167.   10.1175/jcli-d-14-00164.1   AbstractWebsite

Forced interannual-to-decadal variability of annual tropical cyclone (TC) track density in the western North Pacific between 1979 and 2008 is studied using TC tracks from observations and simulations by a 25-km-resolution version of the GFDL High-Resolution Atmospheric Model (HiRAM) that is forced by observed sea surface temperatures (SSTs). Two modes dominate the decadal variability: a nearly basinwide mode, and a dipole mode between the subtropics and lower latitudes. The former mode links to variations in TC number and is forced by SST variations over the off-equatorial tropical central North Pacific, whereas the latter might be associated with the Atlantic multidecadal oscillation. The interannual variability is also controlled by two modes: a basinwide mode driven by SST anomalies of opposite signs located in the tropical central Pacific and eastern Indian Ocean, and a southeast-northwest dipole mode connected to the conventional eastern Pacific ENSO. The seasonal evolution of the ENSO effect on TC activity is further explored via a joint empirical orthogonal function analysis using TC track density of consecutive seasons, and the analysis reveals that two types of ENSO are at work. Internal variability in TC track density is then examined using ensemble simulations from both HiRAM and a regional atmospheric model. It exhibits prominent spatial and seasonal patterns, and it is particularly strong in the South China Sea and along the coast of East Asia. This makes an accurate prediction and projection of TC landfall extremely challenging in these regions. In contrast, basin-integrated metrics (e.g., total TC counts and TC days) are more predictable.

Zhou, ZQ, Xie SP, Zheng XT, Liu QY, Wang H.  2014.  Global warming-induced changes in El Nino teleconnections over the North Pacific and North America. Journal of Climate. 27:9050-9064.   10.1175/jcli-d-14-00254.1   AbstractWebsite

El Nino-Southern Oscillation (ENSO) induces climate anomalies around the globe. Atmospheric general circulation model simulations are used to investigate how ENSO-induced teleconnection patterns during boreal winter might change in response to global warming in the Pacific-North American sector. As models disagree on changes in the amplitude and spatial pattern of ENSO in response to global warming, for simplicity the same sea surface temperature (SST) pattern of ENSO is prescribed before and after the climate warming. In a warmer climate, precipitation anomalies intensify and move eastward over the equatorial Pacific during El Nino because the enhanced mean SST warming reduces the barrier to deep convection in the eastern basin. Associated with the eastward shift of tropical convective anomalies, the ENSO-forced Pacific-North American (PNA) teleconnection pattern moves eastward and intensifies under the climate warming. By contrast, the PNA mode of atmospheric internal variability remains largely unchanged in pattern, suggesting the importance of tropical convection in shifting atmospheric teleconnections. As the ENSO-induced PNA pattern shifts eastward, rainfall anomalies are expected to intensify on the west coast of North America, and the El Nino-induced surface warming to expand eastward and occupy all of northern North America. The spatial pattern of the mean SST warming affects changes in ENSO teleconnections. The teleconnection changes are larger with patterned mean warming than in an idealized case where the spatially uniform warming is prescribed in the mean state. The results herein suggest that the eastward-shifted PNA pattern is a robust change to be expected in the future, independent of the uncertainty in changes of ENSO itself.

Hu, KM, Huang G, Zheng XT, Xie SP, Qu X, Du Y, Liu L.  2014.  Interdecadal variations in ENSO influences on Northwest Pacific-East Asian early summertime climate simulated in CMIP5 models. Journal of Climate. 27:5982-5998.   10.1175/jcli-d-13-00268.1   AbstractWebsite

The present study investigates interdecadal modulations of the El Nino-Southern Oscillation (ENSO) influence on the climate of the northwest Pacific (NWP) and East Asia (EA) in early boreal summer following a winter ENSO event, based on 19 simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5). In the historical run, 8 out of 19 models capture a realistic relationship between ENSO and NWP early summer climate-an anomalous anticyclone develops over the NWP following a winter El Nino event- and the interdecadal modulations of this correlation. During periods when the association between ENSO and NWP early summer climate is strong, ENSO variance and ENSO-induced anomalies of summer sea surface temperature (SST) and tropospheric temperature over the tropical Indian Ocean (TIO) all strengthen relative to periods when the association is weak. In future projections with representative concentration pathways 4.5 and 8.5, the response of TIO SST, tropospheric temperature, and NWP anomalous anticyclone to ENSO all strengthen regardless of ENSO amplitude change. In a warmer climate, low-level specific humidity response to interannual SST variability strengthens following the Clausius-Clapeyron equation. The resultant intensification of tropospheric temperature response to interannual TIO warming is suggested as the mechanism for the strengthened ENSO effect on NWP-EA summer climate.

Mei, W, Xie SP, Zhao M.  2014.  Variability of tropical cyclone track density in the North Atlantic: Observations and high-resolution simulations. Journal of Climate. 27:4797-4814.   10.1175/jcli-d-13-00587.1   AbstractWebsite

Interannual-decadal variability of tropical cyclone (TC) track density over the North Atlantic (NA) between 1979 and 2008 is studied using observations and simulations with a 25-km-resolution version of the High Resolution Atmospheric Model (HiRAM) forced by observed sea surface temperatures (SSTs). The variability on decadal and interannual time scales is examined separately. On both time scales, a basinwide mode dominates, with the time series being related to variations in seasonal TC counts. On decadal time scales, this mode relates to SST contrasts between the tropical NA and the tropical northeast Pacific as well as the tropical South Atlantic, whereas on interannual time scales it is controlled by SSTs over the central eastern equatorial Pacific and those over the tropical NA. The temporal evolution of the spatial distribution of track density is further investigated by normalizing the track density with seasonal TC counts. On decadal time scales, two modes emerge: one is an oscillation between track density over the U.S. East Coast and midlatitude ocean and that over the Gulf of Mexico and the Caribbean Sea and the other oscillates between low and middle latitudes. They might be driven by the preceding winter North Atlantic Oscillation and concurrent Atlantic meridional mode, respectively. On interannual time scales, two similar modes are present in observations but are not well separated in HiRAM simulations. Finally, the internal variability and predictability of TC track density are explored and discussed using HiRAM ensemble simulations. The results suggest that basinwide total TC counts/days are much more predictable than local TC occurrence, posing a serious challenge to the prediction and projection of regional TC threats, especially the U.S. landfall hurricanes.

Feng, M, McPhaden MJ, Xie SP, Hafner J.  2013.  La Nina forces unprecedented Leeuwin Current warming in 2011. Scientific Reports. 3   10.1038/srep01277   AbstractWebsite

Unprecedented warm sea surface temperature (SST) anomalies were observed off the west coast of Australia in February-March 2011. Peak SST during a 2-week period were 5 degrees C warmer than normal, causing widespread coral bleaching and fish kills. Understanding the climatic drivers of this extreme event, which we dub "Ningaloo Nino", is crucial for predicting similar events under the influence of global warming. Here we use observational data and numerical models to demonstrate that the extreme warming was mostly driven by an unseasonable surge of the poleward-flowing Leeuwin Current in austral summer, which transported anomalously warm water southward along the coast. The unusual intensification of the Leeuwin Current was forced remotely by oceanic and atmospheric teleconnections associated with the extraordinary 2010-2011 La Nina. The amplitude of the warming was boosted by both multi-decadal trends in the Pacific toward more La Nina-like conditions and intraseasonal variations in the Indian Ocean.