Publications

Export 1 results:
Sort by: Author Title Type [ Year  (Desc)]
2019
Cai, WJ, Wu LX, Lengaigne M, Li T, McGregor S, Kug JS, Yu JY, Stuecker MF, Santoso A, Li XC, Ham YG, Chikamoto Y, Ng B, McPhaden MJ, Du Y, Dommenget D, Jia F, Kajtar JB, Keenlyside N, Lin XP, Luo JJ, Martin-Rey M, Ruprich-Robert Y, Wang GJ, Xie SP, Yang Y, Kang SM, Choi JY, Gan BL, Kim GI, Kim CE, Kim S, Kim JH, Chang P.  2019.  Pantropical climate interactions. Science. 363:944-+.   10.1126/science.aav4236   AbstractWebsite

The El Nino-Southern Oscillation (ENSO), which originates in the Pacific, is the strongest and most well-known mode of tropical climate variability. Its reach is global, and it can force climate variations of the tropical Atlantic and Indian Oceans by perturbing the global atmospheric circulation. Less appreciated is how the tropical Atlantic and Indian Oceans affect the Pacific. Especially noteworthy is the multidecadal Atlantic warming that began in the late 1990s, because recent research suggests that it has influenced Indo-Pacific climate, the character of the ENSO cycle, and the hiatus in global surface warming. Discovery of these pantropical interactions provides a pathway forward for improving predictions of climate variability in the current climate and for refining projections of future climate under different anthropogenic forcing scenarios.