Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2019
Wang, H, Xie SP, Kosaka Y, Liu QY, Du Y.  2019.  Dynamics of Asian summer monsoon response to anthropogenic aerosol forcing. Journal of Climate. 32:843-858.   10.1175/jcli-d-18-0386.1   AbstractWebsite

Anthropogenic aerosols partially mask the greenhouse warming and cause the reduction in Asian summer monsoon precipitation and circulation. By decomposing the atmospheric change into the direct atmospheric response to radiative forcing and sea surface temperature (SST)-mediated change, the physical mechanisms for anthropogenic-aerosol-induced changes in the East Asian summer monsoon (EASM) and South Asian summer monsoon (SASM) are diagnosed. Using coupled and atmospheric general circulation models, this study shows that the aerosol-induced troposphere cooling over Asian land regions generates anomalous sinking motion between 20 degrees and 40 degrees N and weakens the EASM north of 20 degrees N without SST change. The decreased EASM precipitation and the attendant wind changes are largely due to this direct atmospheric response to radiative forcing, although the aerosol-induced North Pacific SST cooling also contributes. The SST-mediated change dominates the aerosol-induced SASM response, with contributions from both the north-south interhemispheric SST gradient and the local SST cooling pattern over the tropical Indian Ocean. Specifically, with large meridional gradient, the zonal-mean SST cooling pattern is most important for the Asian summer monsoon response to anthropogenic aerosol forcing, resulting in a reorganization of the regional meridional atmospheric overturning circulation. While uncertainty in aerosol radiative forcing has been emphasized in the literature, our results show that the intermodel spread is as large in the SST effect on summer monsoon rainfall, calling for more research into the ocean-atmosphere coupling.

Zheng, XT, Hui C, Xie SP, Cai WJ, Long SM.  2019.  Intensification of El Nino Rainfall Variability Over the Tropical Pacific in the Slow Oceanic Response to Global Warming. Geophysical Research Letters. 46:2253-2260.   10.1029/2018gl081414   AbstractWebsite

Changes in rainfall variability of El Nino-Southern Oscillation (ENSO) are investigated under scenarios where the greenhouse gases increase and then stabilize. During the period of increasing greenhouse forcing, the ocean mixed layer warms rapidly. After the forcing stabilizes, the deeper ocean continues to warm the surface (the slow response). We show that ENSO rainfall variability over the tropical Pacific intensifies in both periods but the rate of increase per degree global mean surface temperature (GMST) warming is larger for the slow response because of greater relative warming in the base state as the mean upwelling changes from a damping to a driver of the surface warming. Our results have important implications for climate extremes under GMST stabilization that the Paris Agreement calls for. To stabilize GMST, the fast surface cooling offsets the slow warming from the prior greenhouse gas increase, while ENSO rainfall variability would continue to increase. Plain Language Summary The Paris Agreement calls for limiting global mean surface temperature increase to well below 2 degrees at the end of the 21st century. This requires the greenhouse gas (GHG) concentration to peak and subsequently decline in the next few decades. After the GHG concentration peak, the heat accumulated in the ocean surface layer continues to penetrate to the deeper ocean. This deeper ocean warming leads to a slow response of surface warming, further influencing the climate system. This study examines scenarios where GHGs increase and then stabilize to isolate the fast and slow responses of El Nino-Southern Oscillation (ENSO) rainfall variability. We find intensification of ENSO rainfall variability both during the increase and after stabilization of GHG concentrations due to a persistent El Nino-like mean warming pattern in the tropical Pacific. Furthermore, for unit global mean surface temperature increase, the changes in the mean state temperature and ENSO rainfall variability in the eastern equatorial Pacific is larger during the slow response. These results imply that there is a need for GHG emission reduction in the near future to avoid more extreme tropical rainfall during El Nino.