Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
Mei, W, Xie SP.  2016.  Intensification of landfalling typhoons over the northwest Pacific since the late 1970s. Nature Geoscience. 9:753-+.   10.1038/ngeo2792   AbstractWebsite

Intensity changes in landfalling typhoons are of great concern to East and Southeast Asian countries(1). Regional changes in typhoon intensity, however, are poorly known owing to inconsistencies among different data sets(2-8). Here, we apply cluster analysis to bias-corrected data and show that, over the past 37 years, typhoons that strike East and Southeast Asia have intensified by 12-15%, with the proportion of storms of categories 4 and 5 having doubled or even tripled. In contrast, typhoons that stay over the open ocean have experienced only modest changes. These regional changes are consistent between operational data sets. To identify the physical mechanisms, we decompose intensity changes into contributions from intensification rate and intensification duration. We find that the increased intensity of landfalling typhoons is due to strengthened intensification rates, which in turn are tied to locally enhanced ocean surface warming on the rim of East and Southeast Asia. The projected ocean surface warming pattern under increasing greenhouse gas forcing suggests that typhoons striking eastern mainland China, Taiwan, Korea and Japan will intensify further. Given disproportionate damages by intense typhoons(1), this represents a heightened threat to people and properties in the region.

Seo, H, Xie SP.  2013.  Impact of ocean warm layer thickness on the intensity of hurricane Katrina in a regional coupled model. Meteorology and Atmospheric Physics. 122:19-32.   10.1007/s00703-013-0275-3   AbstractWebsite

The effect of pre-storm subsurface thermal structure on the intensity of hurricane Katrina (2005) is examined using a regional coupled model. The Estimating Circulation and Climate of Ocean (ECCO) ocean state estimate is used to initialize the ocean component of the coupled model, and the source of deficiencies in the simulation of Katrina intensity is investigated in relation to the initial depth of 26 A degrees C isotherm (D26). The model underestimates the intensity of Katrina partly due to shallow D26 in ECCO. Sensitivity tests with various ECCO initial fields indicate that the correct relationship between intensity and D26 cannot be derived because D26 variability is underestimated in ECCO. A series of idealized experiments is carried out by modifying initial ECCO D26 to match the observed range. A more reasonable relationship between Katrina's intensity and pre-storm D26 emerges: the intensity is much more sensitive to D26 than to sea surface temperature (SST). Ocean mixed layer process plays a critical role in modulating inner-core SSTs when D26 is deep, reducing mixed layer cooling and lowering the center pressure of the Katrina. Our result lends strong support to the notion that accurate initialization of pre-storm subsurface thermal structure in prediction models is critical for a skillful forecast of intensity of Katrina and likely other intense storms.