Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
Shi, JR, Xie SP, Talley LD.  2018.  Evolving relative importance of the Southern Ocean and North Atlantic in anthropogenic ocean heat uptake. Journal of Climate. 31:7459-7479.   10.1175/jcli-d-18-0170.1   AbstractWebsite

Ocean uptake of anthropogenic heat over the past 15 years has mostly occurred in the Southern Ocean, based on Argo float observations. This agrees with historical simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5), where the Southern Ocean (south of 30 degrees S) accounts for 72% +/- 28% of global heat uptake, while the contribution from the North Atlantic north of 30 degrees N is only 6%. Aerosols preferentially cool the Northern Hemisphere, and the effect on surface heat flux over the subpolar North Atlantic opposes the greenhouse gas (GHG) effect in nearly equal magnitude. This heat uptake compensation is associated with weakening (strengthening) of the Atlantic meridional overturning circulation (AMOC) in response to GHG (aerosol) radiative forcing. Aerosols are projected to decline in the near future, reinforcing the greenhouse effect on the North Atlantic heat uptake. As a result, the Southern Ocean, which will continue to take up anthropogenic heat largely through the mean upwelling of water from depth, will be joined by increased relative contribution from the North Atlantic because of substantial AMOC slowdown in the twenty-first century. In the RCP8.5 scenario, the percentage contribution to global uptake is projected to decrease to 48% +/- 8% in the Southern Ocean and increase to 26% +/- 6% in the northern North Atlantic. Despite the large uncertainty in the magnitude of projected aerosol forcing, our results suggest that anthropogenic aerosols, given their geographic distributions and temporal trajectories, strongly influence the high-latitude ocean heat uptake and interhemispheric asymmetry through AMOC change.

Liu, W, Lu J, Xie SP, Fedorov A.  2018.  Southern Ocean heat uptake, redistribution, and storage in a warming climate: The role of meridional overturning circulation. Journal of Climate. 31:4727-4743.   10.1175/jcli-d-17-0761.1   AbstractWebsite

Climate models show that most of the anthropogenic heat resulting from increased atmospheric CO2 enters the Southern Ocean near 60 degrees S and is stored around 45 degrees S. This heat is transported to the ocean interior by the meridional overturning circulation (MOC) with wind changes playing an important role in the process. To isolate and quantify the latter effect, we apply an overriding technique to a climate model and decompose the total ocean response to CO2 increase into two major components: one due to wind changes and the other due to direct CO2 effect. We find that the poleward-intensified zonal surface winds tend to shift and strengthen the ocean Deacon cell and hence the residual MOC, leading to anomalous divergence of ocean meridional heat transport around 60 degrees S coupled to a surface heat flux increase. In contrast, at 45 degrees S we see anomalous convergence of ocean heat transport and heat loss at the surface. As a result, the wind-induced ocean heat storage (OHS) peaks at 46 degrees S at a rate of 0.07 ZJ yr(-1) (degrees lat)(-1) (1 ZJ = 10(21) J), contributing 20% to the total OHS maximum. The direct CO2 effect, on the other hand, very slightly alters the residual MOC but primarily warms the ocean. It induces a small but nonnegligible change in eddy heat transport and causes OHS to peak at 42 degrees S at a rate of 0.30 ZJ yr(-1) (degrees lat)(-1), accounting for 80% of the OHS maximum. We also find that the eddy-induced MOC weakens, primarily caused by a buoyancy flux change as a result of the direct CO2 effect, and does not compensate the intensified Deacon cell.

Liu, W, Lu J, Xie SP.  2015.  Understanding the Indian Ocean response to double CO2 forcing in a coupled model. Ocean Dynamics. 65:1037-1046.   10.1007/s10236-015-0854-6   AbstractWebsite

This study investigates the roles of multiple ocean-atmospheric feedbacks in the oceanic response to increased carbon dioxide by applying an overriding technique to a coupled climate model. The annual-mean sea surface temperature (SST) response in the Indian Ocean exhibits a zonal-dipolar warming pattern, with a reduced warming in the eastern and enhanced warming in the western tropical Indian Ocean (TIO), reminiscent of the Indian Ocean Dipole (IOD) pattern. The development of the dipole pattern exhibits a pronounced seasonal evolution. The overriding experiments show that the wind-evaporation-sea surface temperature (WES) feedback accounts for most of the enhanced warming in the western and central TIO during May-July with reduced southerly monsoonal wind and contributes partially to the reduced warming in the eastern TIO during June-September. The Bjerknes feedback explains most of the reduced warming in the eastern TIO during August-October, accompanied by a reduction of precipitation, easterly wind anomalies, and a thermocline shoaling along the equator. Both feedbacks facilitate the formation of the dipolar warming pattern in the TIO. The residual from the Bjerknes and WES feedbacks is attributable to the "static" response to increasing CO2. While the static SST response also contributes to the seasonal SST variations, the static precipitation response is relatively uniform in the TIO, appearing as a general increase of precipitation along the equatorial Indian Ocean during June-September.

Maloney, ED, Jiang XA, Xie SP, Benedict JJ.  2014.  Process-oriented diagnosis of East Pacific warm pool intraseasonal variability. Journal of Climate. 27:6305-6324.   10.1175/jcli-d-14-00053.1   AbstractWebsite

June-October east Pacific warm pool intraseasonal variability (ISV) is assessed in eight atmospheric general circulation simulations. Complex empirical orthogonal function analysis is used to document the leading mode of 30-90-day precipitation variability in the models and Tropical Rainfall Measuring Mission observations. The models exhibit a large spread in amplitude of the leading mode about the observed amplitude. Little relationship is demonstrated between the amplitude of the leading mode and the ability of models to simulate observed north-northeastward propagation. Several process-oriented diagnostics are explored that attempt to distinguish why some models produce superior ISV. A diagnostic based on the difference in 500-850-hPa averaged relative humidity between the top 5% and the bottom 10% of precipitation events exhibits a significant correlation with leading mode amplitude. Diagnostics based on the vertically integrated moist entropy budget also demonstrate success at discriminating models with strong and weak variability. In particular, the vertical component of gross moist stability exhibits a correlation with amplitude of -0.9, suggesting that models in which convection and associated divergent circulations are less efficient at discharging moisture from the column are better able to sustain strong ISV. Several other diagnostics are tested that show no significant relationship with leading mode amplitude, including the warm pool mean surface zonal wind, the strength of surface flux feedbacks, and 500-850-hPa averaged relative humidity for the top 1% of rainfall events. Vertical zonal wind shear and 850-hPa zonal wind do not appear to be good predictors of model success at simulating the observed northward propagation pattern.