Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
Cai, WJ, Wu LX, Lengaigne M, Li T, McGregor S, Kug JS, Yu JY, Stuecker MF, Santoso A, Li XC, Ham YG, Chikamoto Y, Ng B, McPhaden MJ, Du Y, Dommenget D, Jia F, Kajtar JB, Keenlyside N, Lin XP, Luo JJ, Martin-Rey M, Ruprich-Robert Y, Wang GJ, Xie SP, Yang Y, Kang SM, Choi JY, Gan BL, Kim GI, Kim CE, Kim S, Kim JH, Chang P.  2019.  Pantropical climate interactions. Science. 363:944-+.   10.1126/science.aav4236   AbstractWebsite

The El Nino-Southern Oscillation (ENSO), which originates in the Pacific, is the strongest and most well-known mode of tropical climate variability. Its reach is global, and it can force climate variations of the tropical Atlantic and Indian Oceans by perturbing the global atmospheric circulation. Less appreciated is how the tropical Atlantic and Indian Oceans affect the Pacific. Especially noteworthy is the multidecadal Atlantic warming that began in the late 1990s, because recent research suggests that it has influenced Indo-Pacific climate, the character of the ENSO cycle, and the hiatus in global surface warming. Discovery of these pantropical interactions provides a pathway forward for improving predictions of climate variability in the current climate and for refining projections of future climate under different anthropogenic forcing scenarios.

Peng, QH, Xie SP, Wang DX, Zheng XT, Zhang H.  2019.  Coupled ocean-atmosphere dynamics of the 2017 extreme coastal El Nino. Nature Communications. 10   10.1038/s41467-018-08258-8   AbstractWebsite

In March 2017, sea surface temperatures off Peru rose above 28 degrees C, causing torrential rains that affected the lives of millions of people. This coastal warming is highly unusual in that it took place with a weak La Nina state. Observations and ocean model experiments show that the downwelling Kelvin waves caused by strong westerly wind events over the equatorial Pacific, together with anomalous northerly coastal winds, are important. Atmospheric model experiments further show the anomalous coastal winds are forced by the coastal warming. Taken together, these results indicate a positive feedback off Peru between the coastal warming, atmospheric deep convection, and the coastal winds. These coupled processes provide predictability. Indeed, initialized on as early as 1 February 2017, seasonal prediction models captured the extreme rainfall event. Climate model projections indicate that the frequency of extreme coastal El Nino will increase under global warming.

Johnson, NC, Xie SP, Kosaka Y, Li XC.  2018.  Increasing occurrence of cold and warm extremes during the recent global warming slowdown. Nature Communications. 9   10.1038/s41467-018-04040-y   AbstractWebsite

The recent levelling of global mean temperatures after the late 1990s, the so-called global warming hiatus or slowdown, ignited a surge of scientific interest into natural global mean surface temperature variability, observed temperature biases, and climate communication, but many questions remain about how these findings relate to variations in more societally relevant temperature extremes. Here we show that both summertime warm and wintertime cold extreme occurrences increased over land during the so-called hiatus period, and that these increases occurred for distinct reasons. The increase in cold extremes is associated with an atmospheric circulation pattern resembling the warm Arctic-cold continents pattern, whereas the increase in warm extremes is tied to a pattern of sea surface temperatures resembling the Atlantic Multidecadal Oscillation. These findings indicate that large-scale factors responsible for the most societally relevant temperature variations over continents are distinct from those of global mean surface temperature.

Tokinaga, H, Xie SP, Deser C, Kosaka Y, Okumura YM.  2012.  Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature. 491:439-+.   10.1038/nature11576   Abstract

Global mean sea surface temperature (SST) has risen steadily over the past century(1,2), but the overall pattern contains extensive and often uncertain spatial variations, with potentially important effects on regional precipitation(3,4). Observations suggest a slowdown of the zonal atmospheric overturning circulation above the tropical Pacific Ocean (the Walker circulation) over the twentieth century(1,5). Although this change has been attributed to a muted hydrological cycle forced by global warming(5,6), the effect of SST warming patterns has not been explored and quantified(1,7,8). Here we perform experiments using an atmospheric model, and find that SST warming patterns are the main cause of the weakened Walker circulation over the past six decades (1950-2009). The SST trend reconstructed from bucket-sampled SST and night-time marine surface air temperature features a reduced zonal gradient in the tropical Indo-Pacific Ocean, a change consistent with subsurface temperature observations(8). Model experiments with this trend pattern robustly simulate the observed changes, including the Walker circulation slowdown and the eastward shift of atmospheric convection from the Indonesian maritime continent to the central tropical Pacific. Our results cannot establish whether the observed changes are due to natural variability or anthropogenic global warming, but they do show that the observed slowdown in the Walker circulation is presumably driven by oceanic rather than atmospheric processes.